summaryrefslogtreecommitdiff
path: root/python-botorch.spec
blob: 3473750c571d6651a38ad9edc7c2bb413f9439ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
%global _empty_manifest_terminate_build 0
Name:		python-botorch
Version:	0.8.3
Release:	1
Summary:	Bayesian Optimization in PyTorch
License:	MIT
URL:		https://botorch.org
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/db/ad/d93b5d9766b5a35bfa908e13af74b90801e820ff1eaf731e73378c27a2a3/botorch-0.8.3.tar.gz
BuildArch:	noarch

Requires:	python3-multipledispatch
Requires:	python3-scipy
Requires:	python3-torch
Requires:	python3-pyro-ppl
Requires:	python3-gpytorch
Requires:	python3-linear-operator
Requires:	python3-pytest
Requires:	python3-pytest-cov
Requires:	python3-flake8
Requires:	python3-ufmt
Requires:	python3-flake8-docstrings
Requires:	python3-black
Requires:	python3-usort
Requires:	python3-sphinx
Requires:	python3-pytest
Requires:	python3-pytest-cov
Requires:	python3-ax-platform
Requires:	python3-cma
Requires:	python3-jupyter
Requires:	python3-kaleido
Requires:	python3-matplotlib
Requires:	python3-memory-profiler
Requires:	python3-papermill
Requires:	python3-pykeops
Requires:	python3-torchvision

%description
<a href="https://botorch.org">
  <img width="350" src="https://botorch.org/img/botorch_logo_lockup.png" alt="BoTorch Logo" />
</a>

<hr/>

[![Support Ukraine](https://img.shields.io/badge/Support-Ukraine-FFD500?style=flat&labelColor=005BBB)](https://opensource.fb.com/support-ukraine)
[![Lint](https://github.com/pytorch/botorch/workflows/Lint/badge.svg)](https://github.com/pytorch/botorch/actions?query=workflow%3ALint)
[![Test](https://github.com/pytorch/botorch/workflows/Test/badge.svg)](https://github.com/pytorch/botorch/actions?query=workflow%3ATest)
[![Docs](https://github.com/pytorch/botorch/workflows/Docs/badge.svg)](https://github.com/pytorch/botorch/actions?query=workflow%3ADocs)
[![Tutorials](https://github.com/pytorch/botorch/workflows/Tutorials/badge.svg)](https://github.com/pytorch/botorch/actions?query=workflow%3ATutorials)
[![Codecov](https://img.shields.io/codecov/c/github/pytorch/botorch.svg)](https://codecov.io/github/pytorch/botorch)

[![Conda](https://img.shields.io/conda/v/pytorch/botorch.svg)](https://anaconda.org/pytorch/botorch)
[![PyPI](https://img.shields.io/pypi/v/botorch.svg)](https://pypi.org/project/botorch)
[![License](https://img.shields.io/badge/license-MIT-green.svg)](LICENSE)


BoTorch is a library for Bayesian Optimization built on PyTorch.

*BoTorch is currently in beta and under active development!*


#### Why BoTorch ?
BoTorch
* Provides a modular and easily extensible interface for composing Bayesian
  optimization primitives, including probabilistic models, acquisition functions,
  and optimizers.
* Harnesses the power of PyTorch, including auto-differentiation, native support
  for highly parallelized modern hardware (e.g. GPUs) using device-agnostic code,
  and a dynamic computation graph.
* Supports Monte Carlo-based acquisition functions via the
  [reparameterization trick](https://arxiv.org/abs/1312.6114), which makes it
  straightforward to implement new ideas without having to impose restrictive
  assumptions about the underlying model.
* Enables seamless integration with deep and/or convolutional architectures in PyTorch.
* Has first-class support for state-of-the art probabilistic models in
  [GPyTorch](http://www.gpytorch.ai/), including support for multi-task Gaussian
  Processes (GPs) deep kernel learning, deep GPs, and approximate inference.


#### Target Audience

The primary audience for hands-on use of BoTorch are researchers and
sophisticated practitioners in Bayesian Optimization and AI.
We recommend using BoTorch as a low-level API for implementing new algorithms
for [Ax](https://ax.dev). Ax has been designed to be an easy-to-use platform
for end-users, which at the same time is flexible enough for Bayesian
Optimization researchers to plug into for handling of feature transformations,
(meta-)data management, storage, etc.
We recommend that end-users who are not actively doing research on Bayesian
Optimization simply use Ax.


## Installation

**Installation Requirements**
- Python >= 3.8
- PyTorch >= 1.12
- gpytorch == 1.9.1
- linear_operator == 0.3.0
- pyro-ppl >= 1.8.4
- scipy
- multiple-dispatch

### Prerequisite only for MacOS users with Intel processors:
Before installing BoTorch, we recommend first manually installing PyTorch, a required dependency of
BoTorch. Installing it according to the [PyTorch installation instructions](https://pytorch.org/get-started/locally/)
ensures that it is properly linked against MKL, a library that optimizes mathematical computation for Intel processors.
This will result in up to an order-of-magnitude speed-up for Bayesian optimization, as at the moment,
installing PyTorch from pip does not link against MKL.

The PyTorch installation instructions currently recommend:
1. Install [Anaconda](https://www.anaconda.com/distribution/#download-section). Note that there are different installers for Intel and M1 Macs.
2. Install PyTorch following the [PyTorch installation instructions](https://pytorch.org/get-started/locally/).
Currently, this suggests running `conda install pytorch torchvision -c pytorch`.

If you want to customize your installation, please follow the [PyTorch installation instructions](https://pytorch.org/get-started/locally/) to build from source.

### Option 1: Installing the latest release

The latest release of BoTorch is easily installed either via
[Anaconda](https://www.anaconda.com/distribution/#download-section) (recommended) or pip.

**To install BoTorch from Anaconda**, run
```bash
conda install botorch -c pytorch -c gpytorch -c conda-forge
```
The above command installs BoTorch and any needed dependencies. ` -c pytorch -c gpytorch -c conda-forge` means that the most preferred source to install from is the PyTorch channel, the next most preferred is the GPyTorch channel,
and the least preferred is conda-forge.

**Alternatively, to install with `pip`**, do
```bash
pip install botorch
```

_Note_: Make sure the `pip` being used is actually the one from the newly created Conda environment. If you're using a Unix-based OS, you can use `which pip` to check.

### Option 2: Installing from latest main branch

If you would like to try our bleeding edge features (and don't mind potentially
running into the occasional bug here or there), you can install the latest
development version directly from GitHub. If you want to also install the
current `gpytorch` and `linear_operator` development versions, you will need
to ensure that the `ALLOW_LATEST_GPYTORCH_LINOP` environment variable is set:
```bash
pip install --upgrade git+https://github.com/cornellius-gp/linear_operator.git
pip install --upgrade git+https://github.com/cornellius-gp/gpytorch.git
export ALLOW_LATEST_GPYTORCH_LINOP=true
pip install --upgrade git+https://github.com/pytorch/botorch.git
```

### Option 3: Editable/dev install

If you want to [contribute](CONTRIBUTING.md) to BoTorch, you will want to install editably so that you can change files and have the
changes reflected in your local install.

If you want to install the current `gpytorch` and `linear_operator` development versions, as in Option 2, do that
before proceeding.

#### Option 3a: Bare-bones editable install

```bash
git clone https://github.com/pytorch/botorch.git
cd botorch
pip install -e .
```

#### Option 3b: Editable install with development and tutorials dependencies

```bash
git clone https://github.com/pytorch/botorch.git
cd botorch
export ALLOW_BOTORCH_LATEST=true
pip install -e ".[dev, tutorials]"
```

* `dev`: Specifies tools necessary for development
  (testing, linting, docs building; see [Contributing](#contributing) below).
* `tutorials`: Also installs all packages necessary for running the tutorial notebooks.
* You can also install either the dev or tutorials dependencies without installing both, e.g. by changing the last command to `pip install -e ".[dev]"`.

## Getting Started

Here's a quick run down of the main components of a Bayesian optimization loop.
For more details see our [Documentation](https://botorch.org/docs/introduction) and the
[Tutorials](https://botorch.org/tutorials).

1. Fit a Gaussian Process model to data
  ```python
  import torch
  from botorch.models import SingleTaskGP
  from botorch.fit import fit_gpytorch_mll
  from gpytorch.mlls import ExactMarginalLogLikelihood

  train_X = torch.rand(10, 2)
  Y = 1 - (train_X - 0.5).norm(dim=-1, keepdim=True)  # explicit output dimension
  Y += 0.1 * torch.rand_like(Y)
  train_Y = (Y - Y.mean()) / Y.std()

  gp = SingleTaskGP(train_X, train_Y)
  mll = ExactMarginalLogLikelihood(gp.likelihood, gp)
  fit_gpytorch_mll(mll)
  ```

2. Construct an acquisition function
  ```python
  from botorch.acquisition import UpperConfidenceBound

  UCB = UpperConfidenceBound(gp, beta=0.1)
  ```

3. Optimize the acquisition function
  ```python
  from botorch.optim import optimize_acqf

  bounds = torch.stack([torch.zeros(2), torch.ones(2)])
  candidate, acq_value = optimize_acqf(
      UCB, bounds=bounds, q=1, num_restarts=5, raw_samples=20,
  )
  ```


## Citing BoTorch

If you use BoTorch, please cite the following paper:
> [M. Balandat, B. Karrer, D. R. Jiang, S. Daulton, B. Letham, A. G. Wilson, and E. Bakshy. BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization. Advances in Neural Information Processing Systems 33, 2020.](https://arxiv.org/abs/1910.06403)

```
@inproceedings{balandat2020botorch,
  title={{BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization}},
  author={Balandat, Maximilian and Karrer, Brian and Jiang, Daniel R. and Daulton, Samuel and Letham, Benjamin and Wilson, Andrew Gordon and Bakshy, Eytan},
  booktitle = {Advances in Neural Information Processing Systems 33},
  year={2020},
  url = {http://arxiv.org/abs/1910.06403}
}
```

See [here](https://botorch.org/docs/papers) for an incomplete selection of peer-reviewed papers that build off of BoTorch.


## Contributing
See the [CONTRIBUTING](CONTRIBUTING.md) file for how to help out.


## License
BoTorch is MIT licensed, as found in the [LICENSE](LICENSE) file.


%package -n python3-botorch
Summary:	Bayesian Optimization in PyTorch
Provides:	python-botorch
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-botorch
<a href="https://botorch.org">
  <img width="350" src="https://botorch.org/img/botorch_logo_lockup.png" alt="BoTorch Logo" />
</a>

<hr/>

[![Support Ukraine](https://img.shields.io/badge/Support-Ukraine-FFD500?style=flat&labelColor=005BBB)](https://opensource.fb.com/support-ukraine)
[![Lint](https://github.com/pytorch/botorch/workflows/Lint/badge.svg)](https://github.com/pytorch/botorch/actions?query=workflow%3ALint)
[![Test](https://github.com/pytorch/botorch/workflows/Test/badge.svg)](https://github.com/pytorch/botorch/actions?query=workflow%3ATest)
[![Docs](https://github.com/pytorch/botorch/workflows/Docs/badge.svg)](https://github.com/pytorch/botorch/actions?query=workflow%3ADocs)
[![Tutorials](https://github.com/pytorch/botorch/workflows/Tutorials/badge.svg)](https://github.com/pytorch/botorch/actions?query=workflow%3ATutorials)
[![Codecov](https://img.shields.io/codecov/c/github/pytorch/botorch.svg)](https://codecov.io/github/pytorch/botorch)

[![Conda](https://img.shields.io/conda/v/pytorch/botorch.svg)](https://anaconda.org/pytorch/botorch)
[![PyPI](https://img.shields.io/pypi/v/botorch.svg)](https://pypi.org/project/botorch)
[![License](https://img.shields.io/badge/license-MIT-green.svg)](LICENSE)


BoTorch is a library for Bayesian Optimization built on PyTorch.

*BoTorch is currently in beta and under active development!*


#### Why BoTorch ?
BoTorch
* Provides a modular and easily extensible interface for composing Bayesian
  optimization primitives, including probabilistic models, acquisition functions,
  and optimizers.
* Harnesses the power of PyTorch, including auto-differentiation, native support
  for highly parallelized modern hardware (e.g. GPUs) using device-agnostic code,
  and a dynamic computation graph.
* Supports Monte Carlo-based acquisition functions via the
  [reparameterization trick](https://arxiv.org/abs/1312.6114), which makes it
  straightforward to implement new ideas without having to impose restrictive
  assumptions about the underlying model.
* Enables seamless integration with deep and/or convolutional architectures in PyTorch.
* Has first-class support for state-of-the art probabilistic models in
  [GPyTorch](http://www.gpytorch.ai/), including support for multi-task Gaussian
  Processes (GPs) deep kernel learning, deep GPs, and approximate inference.


#### Target Audience

The primary audience for hands-on use of BoTorch are researchers and
sophisticated practitioners in Bayesian Optimization and AI.
We recommend using BoTorch as a low-level API for implementing new algorithms
for [Ax](https://ax.dev). Ax has been designed to be an easy-to-use platform
for end-users, which at the same time is flexible enough for Bayesian
Optimization researchers to plug into for handling of feature transformations,
(meta-)data management, storage, etc.
We recommend that end-users who are not actively doing research on Bayesian
Optimization simply use Ax.


## Installation

**Installation Requirements**
- Python >= 3.8
- PyTorch >= 1.12
- gpytorch == 1.9.1
- linear_operator == 0.3.0
- pyro-ppl >= 1.8.4
- scipy
- multiple-dispatch

### Prerequisite only for MacOS users with Intel processors:
Before installing BoTorch, we recommend first manually installing PyTorch, a required dependency of
BoTorch. Installing it according to the [PyTorch installation instructions](https://pytorch.org/get-started/locally/)
ensures that it is properly linked against MKL, a library that optimizes mathematical computation for Intel processors.
This will result in up to an order-of-magnitude speed-up for Bayesian optimization, as at the moment,
installing PyTorch from pip does not link against MKL.

The PyTorch installation instructions currently recommend:
1. Install [Anaconda](https://www.anaconda.com/distribution/#download-section). Note that there are different installers for Intel and M1 Macs.
2. Install PyTorch following the [PyTorch installation instructions](https://pytorch.org/get-started/locally/).
Currently, this suggests running `conda install pytorch torchvision -c pytorch`.

If you want to customize your installation, please follow the [PyTorch installation instructions](https://pytorch.org/get-started/locally/) to build from source.

### Option 1: Installing the latest release

The latest release of BoTorch is easily installed either via
[Anaconda](https://www.anaconda.com/distribution/#download-section) (recommended) or pip.

**To install BoTorch from Anaconda**, run
```bash
conda install botorch -c pytorch -c gpytorch -c conda-forge
```
The above command installs BoTorch and any needed dependencies. ` -c pytorch -c gpytorch -c conda-forge` means that the most preferred source to install from is the PyTorch channel, the next most preferred is the GPyTorch channel,
and the least preferred is conda-forge.

**Alternatively, to install with `pip`**, do
```bash
pip install botorch
```

_Note_: Make sure the `pip` being used is actually the one from the newly created Conda environment. If you're using a Unix-based OS, you can use `which pip` to check.

### Option 2: Installing from latest main branch

If you would like to try our bleeding edge features (and don't mind potentially
running into the occasional bug here or there), you can install the latest
development version directly from GitHub. If you want to also install the
current `gpytorch` and `linear_operator` development versions, you will need
to ensure that the `ALLOW_LATEST_GPYTORCH_LINOP` environment variable is set:
```bash
pip install --upgrade git+https://github.com/cornellius-gp/linear_operator.git
pip install --upgrade git+https://github.com/cornellius-gp/gpytorch.git
export ALLOW_LATEST_GPYTORCH_LINOP=true
pip install --upgrade git+https://github.com/pytorch/botorch.git
```

### Option 3: Editable/dev install

If you want to [contribute](CONTRIBUTING.md) to BoTorch, you will want to install editably so that you can change files and have the
changes reflected in your local install.

If you want to install the current `gpytorch` and `linear_operator` development versions, as in Option 2, do that
before proceeding.

#### Option 3a: Bare-bones editable install

```bash
git clone https://github.com/pytorch/botorch.git
cd botorch
pip install -e .
```

#### Option 3b: Editable install with development and tutorials dependencies

```bash
git clone https://github.com/pytorch/botorch.git
cd botorch
export ALLOW_BOTORCH_LATEST=true
pip install -e ".[dev, tutorials]"
```

* `dev`: Specifies tools necessary for development
  (testing, linting, docs building; see [Contributing](#contributing) below).
* `tutorials`: Also installs all packages necessary for running the tutorial notebooks.
* You can also install either the dev or tutorials dependencies without installing both, e.g. by changing the last command to `pip install -e ".[dev]"`.

## Getting Started

Here's a quick run down of the main components of a Bayesian optimization loop.
For more details see our [Documentation](https://botorch.org/docs/introduction) and the
[Tutorials](https://botorch.org/tutorials).

1. Fit a Gaussian Process model to data
  ```python
  import torch
  from botorch.models import SingleTaskGP
  from botorch.fit import fit_gpytorch_mll
  from gpytorch.mlls import ExactMarginalLogLikelihood

  train_X = torch.rand(10, 2)
  Y = 1 - (train_X - 0.5).norm(dim=-1, keepdim=True)  # explicit output dimension
  Y += 0.1 * torch.rand_like(Y)
  train_Y = (Y - Y.mean()) / Y.std()

  gp = SingleTaskGP(train_X, train_Y)
  mll = ExactMarginalLogLikelihood(gp.likelihood, gp)
  fit_gpytorch_mll(mll)
  ```

2. Construct an acquisition function
  ```python
  from botorch.acquisition import UpperConfidenceBound

  UCB = UpperConfidenceBound(gp, beta=0.1)
  ```

3. Optimize the acquisition function
  ```python
  from botorch.optim import optimize_acqf

  bounds = torch.stack([torch.zeros(2), torch.ones(2)])
  candidate, acq_value = optimize_acqf(
      UCB, bounds=bounds, q=1, num_restarts=5, raw_samples=20,
  )
  ```


## Citing BoTorch

If you use BoTorch, please cite the following paper:
> [M. Balandat, B. Karrer, D. R. Jiang, S. Daulton, B. Letham, A. G. Wilson, and E. Bakshy. BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization. Advances in Neural Information Processing Systems 33, 2020.](https://arxiv.org/abs/1910.06403)

```
@inproceedings{balandat2020botorch,
  title={{BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization}},
  author={Balandat, Maximilian and Karrer, Brian and Jiang, Daniel R. and Daulton, Samuel and Letham, Benjamin and Wilson, Andrew Gordon and Bakshy, Eytan},
  booktitle = {Advances in Neural Information Processing Systems 33},
  year={2020},
  url = {http://arxiv.org/abs/1910.06403}
}
```

See [here](https://botorch.org/docs/papers) for an incomplete selection of peer-reviewed papers that build off of BoTorch.


## Contributing
See the [CONTRIBUTING](CONTRIBUTING.md) file for how to help out.


## License
BoTorch is MIT licensed, as found in the [LICENSE](LICENSE) file.


%package help
Summary:	Development documents and examples for botorch
Provides:	python3-botorch-doc
%description help
<a href="https://botorch.org">
  <img width="350" src="https://botorch.org/img/botorch_logo_lockup.png" alt="BoTorch Logo" />
</a>

<hr/>

[![Support Ukraine](https://img.shields.io/badge/Support-Ukraine-FFD500?style=flat&labelColor=005BBB)](https://opensource.fb.com/support-ukraine)
[![Lint](https://github.com/pytorch/botorch/workflows/Lint/badge.svg)](https://github.com/pytorch/botorch/actions?query=workflow%3ALint)
[![Test](https://github.com/pytorch/botorch/workflows/Test/badge.svg)](https://github.com/pytorch/botorch/actions?query=workflow%3ATest)
[![Docs](https://github.com/pytorch/botorch/workflows/Docs/badge.svg)](https://github.com/pytorch/botorch/actions?query=workflow%3ADocs)
[![Tutorials](https://github.com/pytorch/botorch/workflows/Tutorials/badge.svg)](https://github.com/pytorch/botorch/actions?query=workflow%3ATutorials)
[![Codecov](https://img.shields.io/codecov/c/github/pytorch/botorch.svg)](https://codecov.io/github/pytorch/botorch)

[![Conda](https://img.shields.io/conda/v/pytorch/botorch.svg)](https://anaconda.org/pytorch/botorch)
[![PyPI](https://img.shields.io/pypi/v/botorch.svg)](https://pypi.org/project/botorch)
[![License](https://img.shields.io/badge/license-MIT-green.svg)](LICENSE)


BoTorch is a library for Bayesian Optimization built on PyTorch.

*BoTorch is currently in beta and under active development!*


#### Why BoTorch ?
BoTorch
* Provides a modular and easily extensible interface for composing Bayesian
  optimization primitives, including probabilistic models, acquisition functions,
  and optimizers.
* Harnesses the power of PyTorch, including auto-differentiation, native support
  for highly parallelized modern hardware (e.g. GPUs) using device-agnostic code,
  and a dynamic computation graph.
* Supports Monte Carlo-based acquisition functions via the
  [reparameterization trick](https://arxiv.org/abs/1312.6114), which makes it
  straightforward to implement new ideas without having to impose restrictive
  assumptions about the underlying model.
* Enables seamless integration with deep and/or convolutional architectures in PyTorch.
* Has first-class support for state-of-the art probabilistic models in
  [GPyTorch](http://www.gpytorch.ai/), including support for multi-task Gaussian
  Processes (GPs) deep kernel learning, deep GPs, and approximate inference.


#### Target Audience

The primary audience for hands-on use of BoTorch are researchers and
sophisticated practitioners in Bayesian Optimization and AI.
We recommend using BoTorch as a low-level API for implementing new algorithms
for [Ax](https://ax.dev). Ax has been designed to be an easy-to-use platform
for end-users, which at the same time is flexible enough for Bayesian
Optimization researchers to plug into for handling of feature transformations,
(meta-)data management, storage, etc.
We recommend that end-users who are not actively doing research on Bayesian
Optimization simply use Ax.


## Installation

**Installation Requirements**
- Python >= 3.8
- PyTorch >= 1.12
- gpytorch == 1.9.1
- linear_operator == 0.3.0
- pyro-ppl >= 1.8.4
- scipy
- multiple-dispatch

### Prerequisite only for MacOS users with Intel processors:
Before installing BoTorch, we recommend first manually installing PyTorch, a required dependency of
BoTorch. Installing it according to the [PyTorch installation instructions](https://pytorch.org/get-started/locally/)
ensures that it is properly linked against MKL, a library that optimizes mathematical computation for Intel processors.
This will result in up to an order-of-magnitude speed-up for Bayesian optimization, as at the moment,
installing PyTorch from pip does not link against MKL.

The PyTorch installation instructions currently recommend:
1. Install [Anaconda](https://www.anaconda.com/distribution/#download-section). Note that there are different installers for Intel and M1 Macs.
2. Install PyTorch following the [PyTorch installation instructions](https://pytorch.org/get-started/locally/).
Currently, this suggests running `conda install pytorch torchvision -c pytorch`.

If you want to customize your installation, please follow the [PyTorch installation instructions](https://pytorch.org/get-started/locally/) to build from source.

### Option 1: Installing the latest release

The latest release of BoTorch is easily installed either via
[Anaconda](https://www.anaconda.com/distribution/#download-section) (recommended) or pip.

**To install BoTorch from Anaconda**, run
```bash
conda install botorch -c pytorch -c gpytorch -c conda-forge
```
The above command installs BoTorch and any needed dependencies. ` -c pytorch -c gpytorch -c conda-forge` means that the most preferred source to install from is the PyTorch channel, the next most preferred is the GPyTorch channel,
and the least preferred is conda-forge.

**Alternatively, to install with `pip`**, do
```bash
pip install botorch
```

_Note_: Make sure the `pip` being used is actually the one from the newly created Conda environment. If you're using a Unix-based OS, you can use `which pip` to check.

### Option 2: Installing from latest main branch

If you would like to try our bleeding edge features (and don't mind potentially
running into the occasional bug here or there), you can install the latest
development version directly from GitHub. If you want to also install the
current `gpytorch` and `linear_operator` development versions, you will need
to ensure that the `ALLOW_LATEST_GPYTORCH_LINOP` environment variable is set:
```bash
pip install --upgrade git+https://github.com/cornellius-gp/linear_operator.git
pip install --upgrade git+https://github.com/cornellius-gp/gpytorch.git
export ALLOW_LATEST_GPYTORCH_LINOP=true
pip install --upgrade git+https://github.com/pytorch/botorch.git
```

### Option 3: Editable/dev install

If you want to [contribute](CONTRIBUTING.md) to BoTorch, you will want to install editably so that you can change files and have the
changes reflected in your local install.

If you want to install the current `gpytorch` and `linear_operator` development versions, as in Option 2, do that
before proceeding.

#### Option 3a: Bare-bones editable install

```bash
git clone https://github.com/pytorch/botorch.git
cd botorch
pip install -e .
```

#### Option 3b: Editable install with development and tutorials dependencies

```bash
git clone https://github.com/pytorch/botorch.git
cd botorch
export ALLOW_BOTORCH_LATEST=true
pip install -e ".[dev, tutorials]"
```

* `dev`: Specifies tools necessary for development
  (testing, linting, docs building; see [Contributing](#contributing) below).
* `tutorials`: Also installs all packages necessary for running the tutorial notebooks.
* You can also install either the dev or tutorials dependencies without installing both, e.g. by changing the last command to `pip install -e ".[dev]"`.

## Getting Started

Here's a quick run down of the main components of a Bayesian optimization loop.
For more details see our [Documentation](https://botorch.org/docs/introduction) and the
[Tutorials](https://botorch.org/tutorials).

1. Fit a Gaussian Process model to data
  ```python
  import torch
  from botorch.models import SingleTaskGP
  from botorch.fit import fit_gpytorch_mll
  from gpytorch.mlls import ExactMarginalLogLikelihood

  train_X = torch.rand(10, 2)
  Y = 1 - (train_X - 0.5).norm(dim=-1, keepdim=True)  # explicit output dimension
  Y += 0.1 * torch.rand_like(Y)
  train_Y = (Y - Y.mean()) / Y.std()

  gp = SingleTaskGP(train_X, train_Y)
  mll = ExactMarginalLogLikelihood(gp.likelihood, gp)
  fit_gpytorch_mll(mll)
  ```

2. Construct an acquisition function
  ```python
  from botorch.acquisition import UpperConfidenceBound

  UCB = UpperConfidenceBound(gp, beta=0.1)
  ```

3. Optimize the acquisition function
  ```python
  from botorch.optim import optimize_acqf

  bounds = torch.stack([torch.zeros(2), torch.ones(2)])
  candidate, acq_value = optimize_acqf(
      UCB, bounds=bounds, q=1, num_restarts=5, raw_samples=20,
  )
  ```


## Citing BoTorch

If you use BoTorch, please cite the following paper:
> [M. Balandat, B. Karrer, D. R. Jiang, S. Daulton, B. Letham, A. G. Wilson, and E. Bakshy. BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization. Advances in Neural Information Processing Systems 33, 2020.](https://arxiv.org/abs/1910.06403)

```
@inproceedings{balandat2020botorch,
  title={{BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization}},
  author={Balandat, Maximilian and Karrer, Brian and Jiang, Daniel R. and Daulton, Samuel and Letham, Benjamin and Wilson, Andrew Gordon and Bakshy, Eytan},
  booktitle = {Advances in Neural Information Processing Systems 33},
  year={2020},
  url = {http://arxiv.org/abs/1910.06403}
}
```

See [here](https://botorch.org/docs/papers) for an incomplete selection of peer-reviewed papers that build off of BoTorch.


## Contributing
See the [CONTRIBUTING](CONTRIBUTING.md) file for how to help out.


## License
BoTorch is MIT licensed, as found in the [LICENSE](LICENSE) file.


%prep
%autosetup -n botorch-0.8.3

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-botorch -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.8.3-1
- Package Spec generated