summaryrefslogtreecommitdiff
path: root/python-bounded-pool-executor.spec
blob: 755d042e62cdb98f4bb99bc896dbd6cc8522c9b4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
%global _empty_manifest_terminate_build 0
Name:		python-bounded-pool-executor
Version:	0.0.3
Release:	1
Summary:	Bounded Process&Thread Pool Executor
License:	MIT
URL:		http://github.com/mowshon/bounded_pool_executor
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/23/f1/e34501c1228415e9fbcac8cb9c81098900e78331b30eeee1816176324bab/bounded_pool_executor-0.0.3.tar.gz
BuildArch:	noarch


%description
# Bounded Process&Thread Pool Executor
BoundedSemaphore for [ProcessPoolExecutor](https://docs.python.org/3/library/concurrent.futures.html#processpoolexecutor) & [ThreadPoolExecutor](https://docs.python.org/3/library/concurrent.futures.html#threadpoolexecutor) from [concurrent.futures](https://docs.python.org/3/library/concurrent.futures.html)

## Installation
```bash
pip install bounded-pool-executor
```

# What is the main problem?
If you use the standard module "**concurrent.futures**" and want to simultaneously process several million data, then a queue of workers will take up all the free memory.

If the script is run on a weak VPS, this will lead to a **memory leak**.



## BoundedProcessPoolExecutor VS ProcessPoolExecutor

# BoundedProcessPoolExecutor
**BoundedProcessPoolExecutor** will put a new worker in queue only when another worker has finished his work.

```python
from bounded_pool_executor import BoundedProcessPoolExecutor
from time import sleep
from random import randint

def do_job(num):
    sleep_sec = randint(1, 10)
    print('value: %d, sleep: %d sec.' % (num, sleep_sec))
    sleep(sleep_sec)

with BoundedProcessPoolExecutor(max_workers=5) as worker:
    for num in range(10000):
        print('#%d Worker initialization' % num)
        worker.submit(do_job, num)

```
### Result:
![BoundedProcessPoolExecutor](https://python-scripts.com/wp-content/uploads/2018/12/bounded.gif)

# Classic concurrent.futures.ProcessPoolExecutor
**ProcessPoolExecutor** inserts all workers into the queue and expects tasks to be performed as the new worker is released, depending on the value of `max_workers`.

```python
import concurrent.futures
from time import sleep
from random import randint

def do_job(num):
    sleep_sec = randint(1, 3)
    print('value: %d, sleep: %d sec.' % (num, sleep_sec))
    sleep(sleep_sec)

with concurrent.futures.ProcessPoolExecutor(max_workers=5) as worker:
    for num in range(100000):
        print('#%d Worker initialization' % num)
        worker.submit(do_job, num)
```

### Result:
![concurrent.futures.ProcessPoolExecutor](https://python-scripts.com/wp-content/uploads/2018/12/future-ProcessPoolExecutor.gif)




%package -n python3-bounded-pool-executor
Summary:	Bounded Process&Thread Pool Executor
Provides:	python-bounded-pool-executor
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-bounded-pool-executor
# Bounded Process&Thread Pool Executor
BoundedSemaphore for [ProcessPoolExecutor](https://docs.python.org/3/library/concurrent.futures.html#processpoolexecutor) & [ThreadPoolExecutor](https://docs.python.org/3/library/concurrent.futures.html#threadpoolexecutor) from [concurrent.futures](https://docs.python.org/3/library/concurrent.futures.html)

## Installation
```bash
pip install bounded-pool-executor
```

# What is the main problem?
If you use the standard module "**concurrent.futures**" and want to simultaneously process several million data, then a queue of workers will take up all the free memory.

If the script is run on a weak VPS, this will lead to a **memory leak**.



## BoundedProcessPoolExecutor VS ProcessPoolExecutor

# BoundedProcessPoolExecutor
**BoundedProcessPoolExecutor** will put a new worker in queue only when another worker has finished his work.

```python
from bounded_pool_executor import BoundedProcessPoolExecutor
from time import sleep
from random import randint

def do_job(num):
    sleep_sec = randint(1, 10)
    print('value: %d, sleep: %d sec.' % (num, sleep_sec))
    sleep(sleep_sec)

with BoundedProcessPoolExecutor(max_workers=5) as worker:
    for num in range(10000):
        print('#%d Worker initialization' % num)
        worker.submit(do_job, num)

```
### Result:
![BoundedProcessPoolExecutor](https://python-scripts.com/wp-content/uploads/2018/12/bounded.gif)

# Classic concurrent.futures.ProcessPoolExecutor
**ProcessPoolExecutor** inserts all workers into the queue and expects tasks to be performed as the new worker is released, depending on the value of `max_workers`.

```python
import concurrent.futures
from time import sleep
from random import randint

def do_job(num):
    sleep_sec = randint(1, 3)
    print('value: %d, sleep: %d sec.' % (num, sleep_sec))
    sleep(sleep_sec)

with concurrent.futures.ProcessPoolExecutor(max_workers=5) as worker:
    for num in range(100000):
        print('#%d Worker initialization' % num)
        worker.submit(do_job, num)
```

### Result:
![concurrent.futures.ProcessPoolExecutor](https://python-scripts.com/wp-content/uploads/2018/12/future-ProcessPoolExecutor.gif)




%package help
Summary:	Development documents and examples for bounded-pool-executor
Provides:	python3-bounded-pool-executor-doc
%description help
# Bounded Process&Thread Pool Executor
BoundedSemaphore for [ProcessPoolExecutor](https://docs.python.org/3/library/concurrent.futures.html#processpoolexecutor) & [ThreadPoolExecutor](https://docs.python.org/3/library/concurrent.futures.html#threadpoolexecutor) from [concurrent.futures](https://docs.python.org/3/library/concurrent.futures.html)

## Installation
```bash
pip install bounded-pool-executor
```

# What is the main problem?
If you use the standard module "**concurrent.futures**" and want to simultaneously process several million data, then a queue of workers will take up all the free memory.

If the script is run on a weak VPS, this will lead to a **memory leak**.



## BoundedProcessPoolExecutor VS ProcessPoolExecutor

# BoundedProcessPoolExecutor
**BoundedProcessPoolExecutor** will put a new worker in queue only when another worker has finished his work.

```python
from bounded_pool_executor import BoundedProcessPoolExecutor
from time import sleep
from random import randint

def do_job(num):
    sleep_sec = randint(1, 10)
    print('value: %d, sleep: %d sec.' % (num, sleep_sec))
    sleep(sleep_sec)

with BoundedProcessPoolExecutor(max_workers=5) as worker:
    for num in range(10000):
        print('#%d Worker initialization' % num)
        worker.submit(do_job, num)

```
### Result:
![BoundedProcessPoolExecutor](https://python-scripts.com/wp-content/uploads/2018/12/bounded.gif)

# Classic concurrent.futures.ProcessPoolExecutor
**ProcessPoolExecutor** inserts all workers into the queue and expects tasks to be performed as the new worker is released, depending on the value of `max_workers`.

```python
import concurrent.futures
from time import sleep
from random import randint

def do_job(num):
    sleep_sec = randint(1, 3)
    print('value: %d, sleep: %d sec.' % (num, sleep_sec))
    sleep(sleep_sec)

with concurrent.futures.ProcessPoolExecutor(max_workers=5) as worker:
    for num in range(100000):
        print('#%d Worker initialization' % num)
        worker.submit(do_job, num)
```

### Result:
![concurrent.futures.ProcessPoolExecutor](https://python-scripts.com/wp-content/uploads/2018/12/future-ProcessPoolExecutor.gif)




%prep
%autosetup -n bounded-pool-executor-0.0.3

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-bounded-pool-executor -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.3-1
- Package Spec generated