diff options
| author | CoprDistGit <infra@openeuler.org> | 2023-05-10 07:50:49 +0000 |
|---|---|---|
| committer | CoprDistGit <infra@openeuler.org> | 2023-05-10 07:50:49 +0000 |
| commit | 7501be6da148835295427c036ba48323900c2799 (patch) | |
| tree | 07592ac032a891dec2ddda1e1a4660bd2b634995 | |
| parent | 2669cd5fb60a1dc5f2f6126898cabeb8380dd37e (diff) | |
automatic import of python-bw2calc
| -rw-r--r-- | .gitignore | 1 | ||||
| -rw-r--r-- | python-bw2calc.spec | 81 | ||||
| -rw-r--r-- | sources | 1 |
3 files changed, 83 insertions, 0 deletions
@@ -0,0 +1 @@ +/bw2calc-1.8.2.tar.gz diff --git a/python-bw2calc.spec b/python-bw2calc.spec new file mode 100644 index 0000000..a7cedef --- /dev/null +++ b/python-bw2calc.spec @@ -0,0 +1,81 @@ +%global _empty_manifest_terminate_build 0 +Name: python-bw2calc +Version: 1.8.2 +Release: 1 +Summary: please add a summary manually as the author left a blank one +License: NewBSD 3-clause; LICENSE.txt +URL: https://bitbucket.org/cmutel/brightway2-calc +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/9a/28/e6685982438135ff6fe9a2016347bafa401e25cfa789eadb4ade461ed881/bw2calc-1.8.2.tar.gz +BuildArch: noarch + + +%description +This package provides the calculation engine for the `Brightway2 life cycle assessment framework <https://brightwaylca.org>`_. `Online documentation <https://docs.brightwaylca.org/>`_ is available, and the source code is hosted on `Bitucket <https://bitbucket.org/cmutel/brightway2-calc>`_. +The emphasis here has been on speed of solving the linear systems, for normal LCA calculations, graph traversal, or Monte Carlo uncertainty analysis. +The Monte Carlo LCA class can do about 30 iterations a second (on a 2011 MacBook Pro). Instead of doing LU factorization, it uses an initial guess and the conjugant gradient squared algorithm. +The multiprocessing Monte Carlo class (ParallelMonteCarlo) can do about 100 iterations a second, using 7 virtual cores. The MultiMonteCarlo class, which does Monte Carlo for many processes (and hence can re-use the factorized technosphere matrix), can do about 500 iterations a second, using 7 virtual cores. Both these algorithms perform best when the initial setup for each worker job is minimized, e.g. by dispatching big chunks. + +%package -n python3-bw2calc +Summary: please add a summary manually as the author left a blank one +Provides: python-bw2calc +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-bw2calc +This package provides the calculation engine for the `Brightway2 life cycle assessment framework <https://brightwaylca.org>`_. `Online documentation <https://docs.brightwaylca.org/>`_ is available, and the source code is hosted on `Bitucket <https://bitbucket.org/cmutel/brightway2-calc>`_. +The emphasis here has been on speed of solving the linear systems, for normal LCA calculations, graph traversal, or Monte Carlo uncertainty analysis. +The Monte Carlo LCA class can do about 30 iterations a second (on a 2011 MacBook Pro). Instead of doing LU factorization, it uses an initial guess and the conjugant gradient squared algorithm. +The multiprocessing Monte Carlo class (ParallelMonteCarlo) can do about 100 iterations a second, using 7 virtual cores. The MultiMonteCarlo class, which does Monte Carlo for many processes (and hence can re-use the factorized technosphere matrix), can do about 500 iterations a second, using 7 virtual cores. Both these algorithms perform best when the initial setup for each worker job is minimized, e.g. by dispatching big chunks. + +%package help +Summary: Development documents and examples for bw2calc +Provides: python3-bw2calc-doc +%description help +This package provides the calculation engine for the `Brightway2 life cycle assessment framework <https://brightwaylca.org>`_. `Online documentation <https://docs.brightwaylca.org/>`_ is available, and the source code is hosted on `Bitucket <https://bitbucket.org/cmutel/brightway2-calc>`_. +The emphasis here has been on speed of solving the linear systems, for normal LCA calculations, graph traversal, or Monte Carlo uncertainty analysis. +The Monte Carlo LCA class can do about 30 iterations a second (on a 2011 MacBook Pro). Instead of doing LU factorization, it uses an initial guess and the conjugant gradient squared algorithm. +The multiprocessing Monte Carlo class (ParallelMonteCarlo) can do about 100 iterations a second, using 7 virtual cores. The MultiMonteCarlo class, which does Monte Carlo for many processes (and hence can re-use the factorized technosphere matrix), can do about 500 iterations a second, using 7 virtual cores. Both these algorithms perform best when the initial setup for each worker job is minimized, e.g. by dispatching big chunks. + +%prep +%autosetup -n bw2calc-1.8.2 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-bw2calc -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 1.8.2-1 +- Package Spec generated @@ -0,0 +1 @@ +165d4a5a3d8e759c74850be74d1a7e65 bw2calc-1.8.2.tar.gz |
