1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
|
%global _empty_manifest_terminate_build 0
Name: python-bw2calc
Version: 1.8.2
Release: 1
Summary: please add a summary manually as the author left a blank one
License: NewBSD 3-clause; LICENSE.txt
URL: https://bitbucket.org/cmutel/brightway2-calc
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/9a/28/e6685982438135ff6fe9a2016347bafa401e25cfa789eadb4ade461ed881/bw2calc-1.8.2.tar.gz
BuildArch: noarch
%description
This package provides the calculation engine for the `Brightway2 life cycle assessment framework <https://brightwaylca.org>`_. `Online documentation <https://docs.brightwaylca.org/>`_ is available, and the source code is hosted on `Bitucket <https://bitbucket.org/cmutel/brightway2-calc>`_.
The emphasis here has been on speed of solving the linear systems, for normal LCA calculations, graph traversal, or Monte Carlo uncertainty analysis.
The Monte Carlo LCA class can do about 30 iterations a second (on a 2011 MacBook Pro). Instead of doing LU factorization, it uses an initial guess and the conjugant gradient squared algorithm.
The multiprocessing Monte Carlo class (ParallelMonteCarlo) can do about 100 iterations a second, using 7 virtual cores. The MultiMonteCarlo class, which does Monte Carlo for many processes (and hence can re-use the factorized technosphere matrix), can do about 500 iterations a second, using 7 virtual cores. Both these algorithms perform best when the initial setup for each worker job is minimized, e.g. by dispatching big chunks.
%package -n python3-bw2calc
Summary: please add a summary manually as the author left a blank one
Provides: python-bw2calc
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-bw2calc
This package provides the calculation engine for the `Brightway2 life cycle assessment framework <https://brightwaylca.org>`_. `Online documentation <https://docs.brightwaylca.org/>`_ is available, and the source code is hosted on `Bitucket <https://bitbucket.org/cmutel/brightway2-calc>`_.
The emphasis here has been on speed of solving the linear systems, for normal LCA calculations, graph traversal, or Monte Carlo uncertainty analysis.
The Monte Carlo LCA class can do about 30 iterations a second (on a 2011 MacBook Pro). Instead of doing LU factorization, it uses an initial guess and the conjugant gradient squared algorithm.
The multiprocessing Monte Carlo class (ParallelMonteCarlo) can do about 100 iterations a second, using 7 virtual cores. The MultiMonteCarlo class, which does Monte Carlo for many processes (and hence can re-use the factorized technosphere matrix), can do about 500 iterations a second, using 7 virtual cores. Both these algorithms perform best when the initial setup for each worker job is minimized, e.g. by dispatching big chunks.
%package help
Summary: Development documents and examples for bw2calc
Provides: python3-bw2calc-doc
%description help
This package provides the calculation engine for the `Brightway2 life cycle assessment framework <https://brightwaylca.org>`_. `Online documentation <https://docs.brightwaylca.org/>`_ is available, and the source code is hosted on `Bitucket <https://bitbucket.org/cmutel/brightway2-calc>`_.
The emphasis here has been on speed of solving the linear systems, for normal LCA calculations, graph traversal, or Monte Carlo uncertainty analysis.
The Monte Carlo LCA class can do about 30 iterations a second (on a 2011 MacBook Pro). Instead of doing LU factorization, it uses an initial guess and the conjugant gradient squared algorithm.
The multiprocessing Monte Carlo class (ParallelMonteCarlo) can do about 100 iterations a second, using 7 virtual cores. The MultiMonteCarlo class, which does Monte Carlo for many processes (and hence can re-use the factorized technosphere matrix), can do about 500 iterations a second, using 7 virtual cores. Both these algorithms perform best when the initial setup for each worker job is minimized, e.g. by dispatching big chunks.
%prep
%autosetup -n bw2calc-1.8.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-bw2calc -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 1.8.2-1
- Package Spec generated
|