summaryrefslogtreecommitdiff
path: root/python-captum.spec
blob: b8bacc6c077011778290de8c2a16b20970286625 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
%global _empty_manifest_terminate_build 0
Name:		python-captum
Version:	0.6.0
Release:	1
Summary:	Model interpretability for PyTorch
License:	BSD-3
URL:		https://captum.ai
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/b6/0e/d3d2803369aa8f666543783bc1c10b111c1a8ee252e53e0ce79ef8c2a27b/captum-0.6.0.tar.gz
BuildArch:	noarch

Requires:	python3-matplotlib
Requires:	python3-numpy
Requires:	python3-torch
Requires:	python3-flask
Requires:	python3-ipython
Requires:	python3-ipywidgets
Requires:	python3-jupyter
Requires:	python3-flask-compress
Requires:	python3-pytest
Requires:	python3-pytest-cov
Requires:	python3-parameterized
Requires:	python3-black
Requires:	python3-flake8
Requires:	python3-sphinx
Requires:	python3-sphinx-autodoc-typehints
Requires:	python3-sphinxcontrib-katex
Requires:	python3-mypy
Requires:	python3-usort
Requires:	python3-ufmt
Requires:	python3-scikit-learn
Requires:	python3-annoy
Requires:	python3-flask
Requires:	python3-ipython
Requires:	python3-ipywidgets
Requires:	python3-jupyter
Requires:	python3-flask-compress
Requires:	python3-pytest
Requires:	python3-pytest-cov
Requires:	python3-parameterized
Requires:	python3-flask
Requires:	python3-ipython
Requires:	python3-ipywidgets
Requires:	python3-jupyter
Requires:	python3-flask-compress
Requires:	python3-torchtext
Requires:	python3-torchvision

%description
![Captum Logo](./website/static/img/captum_logo.png)

<hr/>

<!--- BADGES: START --->
[![GitHub - License](https://img.shields.io/github/license/pytorch/captum?logo=github&style=flat&color=green)][#github-license]
[![Conda](https://img.shields.io/conda/vn/pytorch/captum?logo=anaconda&style=flat&color=orange)](https://anaconda.org/pytorch/captum)
[![PyPI](https://img.shields.io/pypi/v/captum.svg)][#pypi-package]
[![CircleCI](https://circleci.com/gh/pytorch/captum.svg?style=shield)](https://circleci.com/gh/pytorch/captum)
[![Conda - Platform](https://img.shields.io/conda/pn/conda-forge/captum?logo=anaconda&style=flat)][#conda-forge-package]
[![Conda (channel only)](https://img.shields.io/conda/vn/conda-forge/captum?logo=anaconda&style=flat&color=orange)][#conda-forge-package]
[![Conda Recipe](https://img.shields.io/static/v1?logo=conda-forge&style=flat&color=green&label=recipe&message=captum)][#conda-forge-feedstock]
[![Docs - GitHub.io](https://img.shields.io/static/v1?logo=captum&style=flat&color=pink&label=docs&message=captum)][#docs-package]

[#github-license]: https://github.com/pytorch/captum/blob/master/LICENSE
[#pypi-package]: https://pypi.org/project/captum/
[#conda-forge-package]: https://anaconda.org/conda-forge/captum
[#conda-forge-feedstock]: https://github.com/conda-forge/captum-feedstock
[#docs-package]: https://captum.ai/
<!--- BADGES: END --->


Captum is a model interpretability and understanding library for PyTorch.
Captum means comprehension in Latin and contains general purpose implementations
of integrated gradients, saliency maps, smoothgrad, vargrad and others for
PyTorch models. It has quick integration for models built with domain-specific
libraries such as torchvision, torchtext, and others.

*Captum is currently in beta and under active development!*


#### About Captum

With the increase in model complexity and the resulting lack of transparency, model interpretability methods have become increasingly important. Model understanding is both an active area of research as well as an area of focus for practical applications across industries using machine learning. Captum provides state-of-the-art algorithms, including Integrated Gradients, to provide researchers and developers with an easy way to understand which features are contributing to a model’s output.

For model developers, Captum can be used to improve and troubleshoot models by facilitating the identification of different features that contribute to a model’s output in order to design better models and troubleshoot unexpected model outputs.

Captum helps ML researchers more easily implement interpretability algorithms that can interact with PyTorch models. Captum also allows researchers to quickly benchmark their work against other existing algorithms available in the library.

![Overview of Attribution Algorithms](./docs/Captum_Attribution_Algos.png)

#### Target Audience

The primary audiences for Captum are model developers who are looking to improve their models and understand which features are important and interpretability researchers focused on identifying algorithms that can better interpret many types of models.

Captum can also be used by application engineers who are using trained models in production. Captum provides easier troubleshooting through improved model interpretability, and the potential for delivering better explanations to end users on why they’re seeing a specific piece of content, such as a movie recommendation.

## Installation

**Installation Requirements**
- Python >= 3.6
- PyTorch >= 1.6


##### Installing the latest release

The latest release of Captum is easily installed either via
[Anaconda](https://www.anaconda.com/distribution/#download-section) (recommended) or via `pip`.

**with `conda`**

You can install captum from any of the following supported conda channels:

- channel: `pytorch`

  ```sh
  conda install captum -c pytorch
  ```

- channel: `conda-forge`

  ```sh
  conda install captum -c conda-forge
  ```

**With `pip`**

```bash
pip install captum
```

**Manual / Dev install**

If you'd like to try our bleeding edge features (and don't mind potentially
running into the occasional bug here or there), you can install the latest
master directly from GitHub. For a basic install, run:
```bash
git clone https://github.com/pytorch/captum.git
cd captum
pip install -e .
```

To customize the installation, you can also run the following variants of the
above:
* `pip install -e .[insights]`: Also installs all packages necessary for running Captum Insights.
* `pip install -e .[dev]`: Also installs all tools necessary for development
  (testing, linting, docs building; see [Contributing](#contributing) below).
* `pip install -e .[tutorials]`: Also installs all packages necessary for running the tutorial notebooks.

To execute unit tests from a manual install, run:
```bash
# running a single unit test
python -m unittest -v tests.attr.test_saliency
# running all unit tests
pytest -ra
```

## Getting Started
Captum helps you interpret and understand predictions of PyTorch models by
exploring features that contribute to a prediction the model makes.
It also helps understand which neurons and layers are important for
model predictions.

Let's apply some of those algorithms to a toy model we have created for
demonstration purposes.
For simplicity, we will use the following architecture, but users are welcome
to use any PyTorch model of their choice.


```python
import numpy as np

import torch
import torch.nn as nn

from captum.attr import (
    GradientShap,
    DeepLift,
    DeepLiftShap,
    IntegratedGradients,
    LayerConductance,
    NeuronConductance,
    NoiseTunnel,
)

class ToyModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.lin1 = nn.Linear(3, 3)
        self.relu = nn.ReLU()
        self.lin2 = nn.Linear(3, 2)

        # initialize weights and biases
        self.lin1.weight = nn.Parameter(torch.arange(-4.0, 5.0).view(3, 3))
        self.lin1.bias = nn.Parameter(torch.zeros(1,3))
        self.lin2.weight = nn.Parameter(torch.arange(-3.0, 3.0).view(2, 3))
        self.lin2.bias = nn.Parameter(torch.ones(1,2))

    def forward(self, input):
        return self.lin2(self.relu(self.lin1(input)))
```

Let's create an instance of our model and set it to eval mode.
```python
model = ToyModel()
model.eval()
```

Next, we need to define simple input and baseline tensors.
Baselines belong to the input space and often carry no predictive signal.
Zero tensor can serve as a baseline for many tasks.
Some interpretability algorithms such as `IntegratedGradients`, `Deeplift` and `GradientShap` are designed to attribute the change
between the input and baseline to a predictive class or a value that the neural
network outputs.

We will apply model interpretability algorithms on the network
mentioned above in order to understand the importance of individual
neurons/layers and the parts of the input that play an important role in the
final prediction.

To make computations deterministic, let's fix random seeds.

```python
torch.manual_seed(123)
np.random.seed(123)
```

Let's define our input and baseline tensors. Baselines are used in some
interpretability algorithms such as `IntegratedGradients, DeepLift,
GradientShap, NeuronConductance, LayerConductance, InternalInfluence` and
`NeuronIntegratedGradients`.

```python
input = torch.rand(2, 3)
baseline = torch.zeros(2, 3)
```
Next we will use `IntegratedGradients` algorithms to assign attribution
scores to each input feature with respect to the first target output.
```python
ig = IntegratedGradients(model)
attributions, delta = ig.attribute(input, baseline, target=0, return_convergence_delta=True)
print('IG Attributions:', attributions)
print('Convergence Delta:', delta)
```
Output:
```
IG Attributions: tensor([[-0.5922, -1.5497, -1.0067],
                         [ 0.0000, -0.2219, -5.1991]])
Convergence Delta: tensor([2.3842e-07, -4.7684e-07])
```
The algorithm outputs an attribution score for each input element and a
convergence delta. The lower the absolute value of the convergence delta the better
is the approximation. If we choose not to return delta,
we can simply not provide the `return_convergence_delta` input
argument. The absolute value of the returned deltas can be interpreted as an
approximation error for each input sample.
It can also serve as a proxy of how accurate the integral approximation for given
inputs and baselines is.
If the approximation error is large, we can try a larger number of integral
approximation steps by setting `n_steps` to a larger value. Not all algorithms
return approximation error. Those which do, though, compute it based on the
completeness property of the algorithms.

Positive attribution score means that the input in that particular position
positively contributed to the final prediction and negative means the opposite.
The magnitude of the attribution score signifies the strength of the contribution.
Zero attribution score means no contribution from that particular feature.

Similarly, we can apply `GradientShap`, `DeepLift` and other attribution algorithms to the model.

`GradientShap` first chooses a random baseline from baselines' distribution, then
 adds gaussian noise with std=0.09 to each input example `n_samples` times.
Afterwards, it chooses a random point between each example-baseline pair and
computes the gradients with respect to target class (in this case target=0). Resulting
attribution is the mean of gradients * (inputs - baselines)
```python
gs = GradientShap(model)

# We define a distribution of baselines and draw `n_samples` from that
# distribution in order to estimate the expectations of gradients across all baselines
baseline_dist = torch.randn(10, 3) * 0.001
attributions, delta = gs.attribute(input, stdevs=0.09, n_samples=4, baselines=baseline_dist,
                                   target=0, return_convergence_delta=True)
print('GradientShap Attributions:', attributions)
print('Convergence Delta:', delta)
```
Output
```
GradientShap Attributions: tensor([[-0.1542, -1.6229, -1.5835],
                                   [-0.3916, -0.2836, -4.6851]])
Convergence Delta: tensor([ 0.0000, -0.0005, -0.0029, -0.0084, -0.0087, -0.0405,  0.0000, -0.0084])

```
Deltas are computed for each `n_samples * input.shape[0]` example. The user can,
for instance, average them:
```python
deltas_per_example = torch.mean(delta.reshape(input.shape[0], -1), dim=1)
```
in order to get per example average delta.


Below is an example of how we can apply `DeepLift` and `DeepLiftShap` on the
`ToyModel` described above. The current implementation of DeepLift supports only the
`Rescale` rule.
For more details on alternative implementations, please see the [DeepLift paper](https://arxiv.org/abs/1704.02685).

```python
dl = DeepLift(model)
attributions, delta = dl.attribute(input, baseline, target=0, return_convergence_delta=True)
print('DeepLift Attributions:', attributions)
print('Convergence Delta:', delta)
```
Output
```
DeepLift Attributions: tensor([[-0.5922, -1.5497, -1.0067],
                               [ 0.0000, -0.2219, -5.1991])
Convergence Delta: tensor([0., 0.])
```
`DeepLift` assigns similar attribution scores as `IntegratedGradients` to inputs,
however it has lower execution time. Another important thing to remember about
DeepLift is that it currently doesn't support all non-linear activation types.
For more details on limitations of the current implementation, please see the
[DeepLift paper](https://arxiv.org/abs/1704.02685).

Similar to integrated gradients, DeepLift returns a convergence delta score
per input example. The approximation error is then the absolute
value of the convergence deltas and can serve as a proxy of how accurate the
algorithm's approximation is.

Now let's look into `DeepLiftShap`. Similar to `GradientShap`, `DeepLiftShap` uses
baseline distribution. In the example below, we use the same baseline distribution
as for `GradientShap`.

```python
dl = DeepLiftShap(model)
attributions, delta = dl.attribute(input, baseline_dist, target=0, return_convergence_delta=True)
print('DeepLiftSHAP Attributions:', attributions)
print('Convergence Delta:', delta)
```
Output
```
DeepLiftShap Attributions: tensor([[-5.9169e-01, -1.5491e+00, -1.0076e+00],
                                   [-4.7101e-03, -2.2300e-01, -5.1926e+00]], grad_fn=<MeanBackward1>)
Convergence Delta: tensor([-4.6120e-03, -1.6267e-03, -5.1045e-04, -1.4184e-03, -6.8886e-03,
                           -2.2224e-02,  0.0000e+00, -2.8790e-02, -4.1285e-03, -2.7295e-02,
                           -3.2349e-03, -1.6265e-03, -4.7684e-07, -1.4191e-03, -6.8889e-03,
                           -2.2224e-02,  0.0000e+00, -2.4792e-02, -4.1289e-03, -2.7296e-02])
```
`DeepLiftShap` uses `DeepLift` to compute attribution score for each
input-baseline pair and averages it for each input across all baselines.

It computes deltas for each input example-baseline pair, thus resulting to
`input.shape[0] * baseline.shape[0]` delta values.

Similar to GradientShap in order to compute example-based deltas we can average them per example:
```python
deltas_per_example = torch.mean(delta.reshape(input.shape[0], -1), dim=1)
```
In order to smooth and improve the quality of the attributions we can run
`IntegratedGradients` and other attribution methods through a `NoiseTunnel`.
`NoiseTunnel` allows us to use `SmoothGrad`, `SmoothGrad_Sq` and `VarGrad` techniques
to smoothen the attributions by aggregating them for multiple noisy
samples that were generated by adding gaussian noise.

Here is an example of how we can use `NoiseTunnel` with `IntegratedGradients`.

```python
ig = IntegratedGradients(model)
nt = NoiseTunnel(ig)
attributions, delta = nt.attribute(input, nt_type='smoothgrad', stdevs=0.02, nt_samples=4,
      baselines=baseline, target=0, return_convergence_delta=True)
print('IG + SmoothGrad Attributions:', attributions)
print('Convergence Delta:', delta)
```
Output
```
IG + SmoothGrad Attributions: tensor([[-0.4574, -1.5493, -1.0893],
                                      [ 0.0000, -0.2647, -5.1619]])
Convergence Delta: tensor([ 0.0000e+00,  2.3842e-07,  0.0000e+00, -2.3842e-07,  0.0000e+00,
        -4.7684e-07,  0.0000e+00, -4.7684e-07])

```
The number of elements in the `delta` tensor is equal to: `nt_samples * input.shape[0]`
In order to get an example-wise delta, we can, for example, average them:
```python
deltas_per_example = torch.mean(delta.reshape(input.shape[0], -1), dim=1)
```

Let's look into the internals of our network and understand which layers
and neurons are important for the predictions.

We will start with the `NeuronConductance`. `NeuronConductance` helps us to identify
input features that are important for a particular neuron in a given
layer. It decomposes the computation of integrated gradients via the chain rule by
defining the importance of a neuron as path integral of the derivative of the output
with respect to the neuron times the derivatives of the neuron with respect to the
inputs of the model.

In this case, we choose to analyze the first neuron in the linear layer.

```python
nc = NeuronConductance(model, model.lin1)
attributions = nc.attribute(input, neuron_selector=1, target=0)
print('Neuron Attributions:', attributions)
```
Output
```
Neuron Attributions: tensor([[ 0.0000,  0.0000,  0.0000],
                             [ 1.3358,  0.0000, -1.6811]])
```

Layer conductance shows the importance of neurons for a layer and given input.
It is an extension of path integrated gradients for hidden layers and holds the
completeness property as well.

It doesn't attribute the contribution scores to the input features
but shows the importance of each neuron in the selected layer.
```python
lc = LayerConductance(model, model.lin1)
attributions, delta = lc.attribute(input, baselines=baseline, target=0, return_convergence_delta=True)
print('Layer Attributions:', attributions)
print('Convergence Delta:', delta)
```
Outputs
```
Layer Attributions: tensor([[ 0.0000,  0.0000, -3.0856],
                            [ 0.0000, -0.3488, -4.9638]], grad_fn=<SumBackward1>)
Convergence Delta: tensor([0.0630, 0.1084])
```

Similar to other attribution algorithms that return convergence delta, `LayerConductance`
returns the deltas for each example. The approximation error is then the absolute
value of the convergence deltas and can serve as a proxy of how accurate integral
approximation for given inputs and baselines is.

More details on the list of supported algorithms and how to apply
Captum on different types of models can be found in our tutorials.


## Captum Insights

Captum provides a web interface called Insights for easy visualization and
access to a number of our interpretability algorithms.

To analyze a sample model on CIFAR10 via Captum Insights run

```
python -m captum.insights.example
```

and navigate to the URL specified in the output.

![Captum Insights Screenshot](./website/static/img/captum_insights_screenshot.png)

To build Insights you will need [Node](https://nodejs.org/en/) >= 8.x
and [Yarn](https://yarnpkg.com/en/) >= 1.5.

To build and launch from a checkout in a conda environment run

```
conda install -c conda-forge yarn
BUILD_INSIGHTS=1 python setup.py develop
python captum/insights/example.py
```

### Captum Insights Jupyter Widget
Captum Insights also has a Jupyter widget providing the same user interface as the web app.
To install and enable the widget, run

```
jupyter nbextension install --py --symlink --sys-prefix captum.insights.attr_vis.widget
jupyter nbextension enable captum.insights.attr_vis.widget --py --sys-prefix
```

To build the widget from a checkout in a conda environment run

```
conda install -c conda-forge yarn
BUILD_INSIGHTS=1 python setup.py develop
```

## FAQ
If you have questions about using Captum methods, please check this [FAQ](docs/faq.md), which addresses many common issues.

## Contributing
See the [CONTRIBUTING](CONTRIBUTING.md) file for how to help out.

## Talks and Papers
**NeurIPS 2019:**
The slides of our presentation  can be found [here](docs/presentations/Captum_NeurIPS_2019_final.key)

**KDD 2020:**
The slides of our presentation from KDD 2020 tutorial can be found [here](https://pytorch-tutorial-assets.s3.amazonaws.com/Captum_KDD_2020.pdf).
You can watch the recorded talk [here](https://www.youtube.com/watch?v=hY_XzglTkak)

**GTC 2020:**
Opening Up the Black Box: Model Understanding with Captum and PyTorch.
You can watch the recorded talk [here](https://www.youtube.com/watch?v=0QLrRyLndFI)

**XAI Summit 2020:**
Using Captum and Fiddler to Improve Model Understanding with Explainable AI.
You can watch the recorded talk [here](https://www.youtube.com/watch?v=dvuVld5Hyc8)

**PyTorch Developer Day 2020**
Model Interpretability.
You can watch the recorded talk [here](https://www.youtube.com/watch?v=Lj5hHBGue58)

**NAACL 2021**
Tutorial on Fine-grained Interpretation and Causation Analysis in Deep NLP Models.
You can watch the recorded talk [here](https://www.youtube.com/watch?v=ayhBHZYjeqs
)

**ICLR 2021 workshop on Responsible AI**:
- [Paper](https://arxiv.org/abs/2009.07896) on the Captum Library
- [Paper](https://arxiv.org/abs/2106.07475) on Invesitgating Sanity Checks for Saliency Maps

## References of Algorithms

* `IntegratedGradients`, `LayerIntegratedGradients`: [Axiomatic Attribution for Deep Networks, Mukund Sundararajan et al. 2017](https://arxiv.org/abs/1703.01365) and [Did the Model Understand the Question?, Pramod K. Mudrakarta, et al. 2018](https://arxiv.org/abs/1805.05492)
* `InputXGradient`: [Not Just a Black Box: Learning Important Features Through Propagating Activation Differences, Avanti Shrikumar et al. 2016](https://arxiv.org/abs/1605.01713)
* `SmoothGrad`: [SmoothGrad: removing noise by adding noise, Daniel Smilkov et al. 2017](https://arxiv.org/abs/1706.03825)
* `NoiseTunnel`: [Sanity Checks for Saliency Maps, Julius Adebayo et al. 2018](https://arxiv.org/abs/1810.03292)
* `NeuronConductance`: [How Important is a neuron?, Kedar Dhamdhere et al. 2018](https://arxiv.org/abs/1805.12233)
* `LayerConductance`: [Computationally Efficient Measures of Internal Neuron Importance, Avanti Shrikumar et al. 2018](https://arxiv.org/abs/1807.09946)
* `DeepLift`, `NeuronDeepLift`, `LayerDeepLift`: [Learning Important Features Through Propagating Activation Differences, Avanti Shrikumar et al. 2017](https://arxiv.org/abs/1704.02685) and [Towards better understanding of gradient-based attribution methods for deep neural networks, Marco Ancona et al. 2018](https://openreview.net/pdf?id=Sy21R9JAW)
* `NeuronIntegratedGradients`: [Computationally Efficient Measures of Internal Neuron Importance, Avanti Shrikumar et al. 2018](https://arxiv.org/abs/1807.09946)
* `GradientShap`, `NeuronGradientShap`, `LayerGradientShap`, `DeepLiftShap`, `NeuronDeepLiftShap`, `LayerDeepLiftShap`: [A Unified Approach to Interpreting Model Predictions, Scott M. Lundberg et al. 2017](http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions)
* `InternalInfluence`: [Influence-Directed Explanations for Deep Convolutional Networks, Klas Leino et al. 2018](https://arxiv.org/abs/1802.03788)
* `Saliency`, `NeuronGradient`: [Deep Inside Convolutional Networks: Visualising
Image Classification Models and Saliency Maps, K. Simonyan, et. al. 2014](https://arxiv.org/abs/1312.6034)
* `GradCAM`, `Guided GradCAM`: [Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, Ramprasaath R. Selvaraju et al. 2017](https://arxiv.org/abs/1610.02391)
* `Deconvolution`, `Neuron Deconvolution`: [Visualizing and Understanding Convolutional Networks, Matthew D Zeiler et al. 2014](https://arxiv.org/abs/1311.2901)
* `Guided Backpropagation`, `Neuron Guided Backpropagation`: [Striving for Simplicity: The All Convolutional Net, Jost Tobias Springenberg et al. 2015](https://arxiv.org/abs/1412.6806)
* `Feature Permutation`: [Permutation Feature Importance](https://christophm.github.io/interpretable-ml-book/feature-importance.html)
* `Occlusion`: [Visualizing and Understanding Convolutional Networks](https://arxiv.org/abs/1311.2901)
* `Shapley Value`: [A value for n-person games. Contributions to the Theory of Games 2.28 (1953): 307-317](https://apps.dtic.mil/dtic/tr/fulltext/u2/604084.pdf)
* `Shapley Value Sampling`: [Polynomial calculation of the Shapley value based on sampling](https://www.sciencedirect.com/science/article/pii/S0305054808000804)
* `Infidelity and Sensitivity`: [On the (In)fidelity and Sensitivity for Explanations](https://arxiv.org/abs/1901.09392)

More details about the above mentioned [attribution algorithms](https://captum.ai/docs/attribution_algorithms) and their pros and cons can be found on our [web-site](https://captum.ai/docs/algorithms_comparison_matrix).

## License
Captum is BSD licensed, as found in the [LICENSE](LICENSE) file.


%package -n python3-captum
Summary:	Model interpretability for PyTorch
Provides:	python-captum
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-captum
![Captum Logo](./website/static/img/captum_logo.png)

<hr/>

<!--- BADGES: START --->
[![GitHub - License](https://img.shields.io/github/license/pytorch/captum?logo=github&style=flat&color=green)][#github-license]
[![Conda](https://img.shields.io/conda/vn/pytorch/captum?logo=anaconda&style=flat&color=orange)](https://anaconda.org/pytorch/captum)
[![PyPI](https://img.shields.io/pypi/v/captum.svg)][#pypi-package]
[![CircleCI](https://circleci.com/gh/pytorch/captum.svg?style=shield)](https://circleci.com/gh/pytorch/captum)
[![Conda - Platform](https://img.shields.io/conda/pn/conda-forge/captum?logo=anaconda&style=flat)][#conda-forge-package]
[![Conda (channel only)](https://img.shields.io/conda/vn/conda-forge/captum?logo=anaconda&style=flat&color=orange)][#conda-forge-package]
[![Conda Recipe](https://img.shields.io/static/v1?logo=conda-forge&style=flat&color=green&label=recipe&message=captum)][#conda-forge-feedstock]
[![Docs - GitHub.io](https://img.shields.io/static/v1?logo=captum&style=flat&color=pink&label=docs&message=captum)][#docs-package]

[#github-license]: https://github.com/pytorch/captum/blob/master/LICENSE
[#pypi-package]: https://pypi.org/project/captum/
[#conda-forge-package]: https://anaconda.org/conda-forge/captum
[#conda-forge-feedstock]: https://github.com/conda-forge/captum-feedstock
[#docs-package]: https://captum.ai/
<!--- BADGES: END --->


Captum is a model interpretability and understanding library for PyTorch.
Captum means comprehension in Latin and contains general purpose implementations
of integrated gradients, saliency maps, smoothgrad, vargrad and others for
PyTorch models. It has quick integration for models built with domain-specific
libraries such as torchvision, torchtext, and others.

*Captum is currently in beta and under active development!*


#### About Captum

With the increase in model complexity and the resulting lack of transparency, model interpretability methods have become increasingly important. Model understanding is both an active area of research as well as an area of focus for practical applications across industries using machine learning. Captum provides state-of-the-art algorithms, including Integrated Gradients, to provide researchers and developers with an easy way to understand which features are contributing to a model’s output.

For model developers, Captum can be used to improve and troubleshoot models by facilitating the identification of different features that contribute to a model’s output in order to design better models and troubleshoot unexpected model outputs.

Captum helps ML researchers more easily implement interpretability algorithms that can interact with PyTorch models. Captum also allows researchers to quickly benchmark their work against other existing algorithms available in the library.

![Overview of Attribution Algorithms](./docs/Captum_Attribution_Algos.png)

#### Target Audience

The primary audiences for Captum are model developers who are looking to improve their models and understand which features are important and interpretability researchers focused on identifying algorithms that can better interpret many types of models.

Captum can also be used by application engineers who are using trained models in production. Captum provides easier troubleshooting through improved model interpretability, and the potential for delivering better explanations to end users on why they’re seeing a specific piece of content, such as a movie recommendation.

## Installation

**Installation Requirements**
- Python >= 3.6
- PyTorch >= 1.6


##### Installing the latest release

The latest release of Captum is easily installed either via
[Anaconda](https://www.anaconda.com/distribution/#download-section) (recommended) or via `pip`.

**with `conda`**

You can install captum from any of the following supported conda channels:

- channel: `pytorch`

  ```sh
  conda install captum -c pytorch
  ```

- channel: `conda-forge`

  ```sh
  conda install captum -c conda-forge
  ```

**With `pip`**

```bash
pip install captum
```

**Manual / Dev install**

If you'd like to try our bleeding edge features (and don't mind potentially
running into the occasional bug here or there), you can install the latest
master directly from GitHub. For a basic install, run:
```bash
git clone https://github.com/pytorch/captum.git
cd captum
pip install -e .
```

To customize the installation, you can also run the following variants of the
above:
* `pip install -e .[insights]`: Also installs all packages necessary for running Captum Insights.
* `pip install -e .[dev]`: Also installs all tools necessary for development
  (testing, linting, docs building; see [Contributing](#contributing) below).
* `pip install -e .[tutorials]`: Also installs all packages necessary for running the tutorial notebooks.

To execute unit tests from a manual install, run:
```bash
# running a single unit test
python -m unittest -v tests.attr.test_saliency
# running all unit tests
pytest -ra
```

## Getting Started
Captum helps you interpret and understand predictions of PyTorch models by
exploring features that contribute to a prediction the model makes.
It also helps understand which neurons and layers are important for
model predictions.

Let's apply some of those algorithms to a toy model we have created for
demonstration purposes.
For simplicity, we will use the following architecture, but users are welcome
to use any PyTorch model of their choice.


```python
import numpy as np

import torch
import torch.nn as nn

from captum.attr import (
    GradientShap,
    DeepLift,
    DeepLiftShap,
    IntegratedGradients,
    LayerConductance,
    NeuronConductance,
    NoiseTunnel,
)

class ToyModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.lin1 = nn.Linear(3, 3)
        self.relu = nn.ReLU()
        self.lin2 = nn.Linear(3, 2)

        # initialize weights and biases
        self.lin1.weight = nn.Parameter(torch.arange(-4.0, 5.0).view(3, 3))
        self.lin1.bias = nn.Parameter(torch.zeros(1,3))
        self.lin2.weight = nn.Parameter(torch.arange(-3.0, 3.0).view(2, 3))
        self.lin2.bias = nn.Parameter(torch.ones(1,2))

    def forward(self, input):
        return self.lin2(self.relu(self.lin1(input)))
```

Let's create an instance of our model and set it to eval mode.
```python
model = ToyModel()
model.eval()
```

Next, we need to define simple input and baseline tensors.
Baselines belong to the input space and often carry no predictive signal.
Zero tensor can serve as a baseline for many tasks.
Some interpretability algorithms such as `IntegratedGradients`, `Deeplift` and `GradientShap` are designed to attribute the change
between the input and baseline to a predictive class or a value that the neural
network outputs.

We will apply model interpretability algorithms on the network
mentioned above in order to understand the importance of individual
neurons/layers and the parts of the input that play an important role in the
final prediction.

To make computations deterministic, let's fix random seeds.

```python
torch.manual_seed(123)
np.random.seed(123)
```

Let's define our input and baseline tensors. Baselines are used in some
interpretability algorithms such as `IntegratedGradients, DeepLift,
GradientShap, NeuronConductance, LayerConductance, InternalInfluence` and
`NeuronIntegratedGradients`.

```python
input = torch.rand(2, 3)
baseline = torch.zeros(2, 3)
```
Next we will use `IntegratedGradients` algorithms to assign attribution
scores to each input feature with respect to the first target output.
```python
ig = IntegratedGradients(model)
attributions, delta = ig.attribute(input, baseline, target=0, return_convergence_delta=True)
print('IG Attributions:', attributions)
print('Convergence Delta:', delta)
```
Output:
```
IG Attributions: tensor([[-0.5922, -1.5497, -1.0067],
                         [ 0.0000, -0.2219, -5.1991]])
Convergence Delta: tensor([2.3842e-07, -4.7684e-07])
```
The algorithm outputs an attribution score for each input element and a
convergence delta. The lower the absolute value of the convergence delta the better
is the approximation. If we choose not to return delta,
we can simply not provide the `return_convergence_delta` input
argument. The absolute value of the returned deltas can be interpreted as an
approximation error for each input sample.
It can also serve as a proxy of how accurate the integral approximation for given
inputs and baselines is.
If the approximation error is large, we can try a larger number of integral
approximation steps by setting `n_steps` to a larger value. Not all algorithms
return approximation error. Those which do, though, compute it based on the
completeness property of the algorithms.

Positive attribution score means that the input in that particular position
positively contributed to the final prediction and negative means the opposite.
The magnitude of the attribution score signifies the strength of the contribution.
Zero attribution score means no contribution from that particular feature.

Similarly, we can apply `GradientShap`, `DeepLift` and other attribution algorithms to the model.

`GradientShap` first chooses a random baseline from baselines' distribution, then
 adds gaussian noise with std=0.09 to each input example `n_samples` times.
Afterwards, it chooses a random point between each example-baseline pair and
computes the gradients with respect to target class (in this case target=0). Resulting
attribution is the mean of gradients * (inputs - baselines)
```python
gs = GradientShap(model)

# We define a distribution of baselines and draw `n_samples` from that
# distribution in order to estimate the expectations of gradients across all baselines
baseline_dist = torch.randn(10, 3) * 0.001
attributions, delta = gs.attribute(input, stdevs=0.09, n_samples=4, baselines=baseline_dist,
                                   target=0, return_convergence_delta=True)
print('GradientShap Attributions:', attributions)
print('Convergence Delta:', delta)
```
Output
```
GradientShap Attributions: tensor([[-0.1542, -1.6229, -1.5835],
                                   [-0.3916, -0.2836, -4.6851]])
Convergence Delta: tensor([ 0.0000, -0.0005, -0.0029, -0.0084, -0.0087, -0.0405,  0.0000, -0.0084])

```
Deltas are computed for each `n_samples * input.shape[0]` example. The user can,
for instance, average them:
```python
deltas_per_example = torch.mean(delta.reshape(input.shape[0], -1), dim=1)
```
in order to get per example average delta.


Below is an example of how we can apply `DeepLift` and `DeepLiftShap` on the
`ToyModel` described above. The current implementation of DeepLift supports only the
`Rescale` rule.
For more details on alternative implementations, please see the [DeepLift paper](https://arxiv.org/abs/1704.02685).

```python
dl = DeepLift(model)
attributions, delta = dl.attribute(input, baseline, target=0, return_convergence_delta=True)
print('DeepLift Attributions:', attributions)
print('Convergence Delta:', delta)
```
Output
```
DeepLift Attributions: tensor([[-0.5922, -1.5497, -1.0067],
                               [ 0.0000, -0.2219, -5.1991])
Convergence Delta: tensor([0., 0.])
```
`DeepLift` assigns similar attribution scores as `IntegratedGradients` to inputs,
however it has lower execution time. Another important thing to remember about
DeepLift is that it currently doesn't support all non-linear activation types.
For more details on limitations of the current implementation, please see the
[DeepLift paper](https://arxiv.org/abs/1704.02685).

Similar to integrated gradients, DeepLift returns a convergence delta score
per input example. The approximation error is then the absolute
value of the convergence deltas and can serve as a proxy of how accurate the
algorithm's approximation is.

Now let's look into `DeepLiftShap`. Similar to `GradientShap`, `DeepLiftShap` uses
baseline distribution. In the example below, we use the same baseline distribution
as for `GradientShap`.

```python
dl = DeepLiftShap(model)
attributions, delta = dl.attribute(input, baseline_dist, target=0, return_convergence_delta=True)
print('DeepLiftSHAP Attributions:', attributions)
print('Convergence Delta:', delta)
```
Output
```
DeepLiftShap Attributions: tensor([[-5.9169e-01, -1.5491e+00, -1.0076e+00],
                                   [-4.7101e-03, -2.2300e-01, -5.1926e+00]], grad_fn=<MeanBackward1>)
Convergence Delta: tensor([-4.6120e-03, -1.6267e-03, -5.1045e-04, -1.4184e-03, -6.8886e-03,
                           -2.2224e-02,  0.0000e+00, -2.8790e-02, -4.1285e-03, -2.7295e-02,
                           -3.2349e-03, -1.6265e-03, -4.7684e-07, -1.4191e-03, -6.8889e-03,
                           -2.2224e-02,  0.0000e+00, -2.4792e-02, -4.1289e-03, -2.7296e-02])
```
`DeepLiftShap` uses `DeepLift` to compute attribution score for each
input-baseline pair and averages it for each input across all baselines.

It computes deltas for each input example-baseline pair, thus resulting to
`input.shape[0] * baseline.shape[0]` delta values.

Similar to GradientShap in order to compute example-based deltas we can average them per example:
```python
deltas_per_example = torch.mean(delta.reshape(input.shape[0], -1), dim=1)
```
In order to smooth and improve the quality of the attributions we can run
`IntegratedGradients` and other attribution methods through a `NoiseTunnel`.
`NoiseTunnel` allows us to use `SmoothGrad`, `SmoothGrad_Sq` and `VarGrad` techniques
to smoothen the attributions by aggregating them for multiple noisy
samples that were generated by adding gaussian noise.

Here is an example of how we can use `NoiseTunnel` with `IntegratedGradients`.

```python
ig = IntegratedGradients(model)
nt = NoiseTunnel(ig)
attributions, delta = nt.attribute(input, nt_type='smoothgrad', stdevs=0.02, nt_samples=4,
      baselines=baseline, target=0, return_convergence_delta=True)
print('IG + SmoothGrad Attributions:', attributions)
print('Convergence Delta:', delta)
```
Output
```
IG + SmoothGrad Attributions: tensor([[-0.4574, -1.5493, -1.0893],
                                      [ 0.0000, -0.2647, -5.1619]])
Convergence Delta: tensor([ 0.0000e+00,  2.3842e-07,  0.0000e+00, -2.3842e-07,  0.0000e+00,
        -4.7684e-07,  0.0000e+00, -4.7684e-07])

```
The number of elements in the `delta` tensor is equal to: `nt_samples * input.shape[0]`
In order to get an example-wise delta, we can, for example, average them:
```python
deltas_per_example = torch.mean(delta.reshape(input.shape[0], -1), dim=1)
```

Let's look into the internals of our network and understand which layers
and neurons are important for the predictions.

We will start with the `NeuronConductance`. `NeuronConductance` helps us to identify
input features that are important for a particular neuron in a given
layer. It decomposes the computation of integrated gradients via the chain rule by
defining the importance of a neuron as path integral of the derivative of the output
with respect to the neuron times the derivatives of the neuron with respect to the
inputs of the model.

In this case, we choose to analyze the first neuron in the linear layer.

```python
nc = NeuronConductance(model, model.lin1)
attributions = nc.attribute(input, neuron_selector=1, target=0)
print('Neuron Attributions:', attributions)
```
Output
```
Neuron Attributions: tensor([[ 0.0000,  0.0000,  0.0000],
                             [ 1.3358,  0.0000, -1.6811]])
```

Layer conductance shows the importance of neurons for a layer and given input.
It is an extension of path integrated gradients for hidden layers and holds the
completeness property as well.

It doesn't attribute the contribution scores to the input features
but shows the importance of each neuron in the selected layer.
```python
lc = LayerConductance(model, model.lin1)
attributions, delta = lc.attribute(input, baselines=baseline, target=0, return_convergence_delta=True)
print('Layer Attributions:', attributions)
print('Convergence Delta:', delta)
```
Outputs
```
Layer Attributions: tensor([[ 0.0000,  0.0000, -3.0856],
                            [ 0.0000, -0.3488, -4.9638]], grad_fn=<SumBackward1>)
Convergence Delta: tensor([0.0630, 0.1084])
```

Similar to other attribution algorithms that return convergence delta, `LayerConductance`
returns the deltas for each example. The approximation error is then the absolute
value of the convergence deltas and can serve as a proxy of how accurate integral
approximation for given inputs and baselines is.

More details on the list of supported algorithms and how to apply
Captum on different types of models can be found in our tutorials.


## Captum Insights

Captum provides a web interface called Insights for easy visualization and
access to a number of our interpretability algorithms.

To analyze a sample model on CIFAR10 via Captum Insights run

```
python -m captum.insights.example
```

and navigate to the URL specified in the output.

![Captum Insights Screenshot](./website/static/img/captum_insights_screenshot.png)

To build Insights you will need [Node](https://nodejs.org/en/) >= 8.x
and [Yarn](https://yarnpkg.com/en/) >= 1.5.

To build and launch from a checkout in a conda environment run

```
conda install -c conda-forge yarn
BUILD_INSIGHTS=1 python setup.py develop
python captum/insights/example.py
```

### Captum Insights Jupyter Widget
Captum Insights also has a Jupyter widget providing the same user interface as the web app.
To install and enable the widget, run

```
jupyter nbextension install --py --symlink --sys-prefix captum.insights.attr_vis.widget
jupyter nbextension enable captum.insights.attr_vis.widget --py --sys-prefix
```

To build the widget from a checkout in a conda environment run

```
conda install -c conda-forge yarn
BUILD_INSIGHTS=1 python setup.py develop
```

## FAQ
If you have questions about using Captum methods, please check this [FAQ](docs/faq.md), which addresses many common issues.

## Contributing
See the [CONTRIBUTING](CONTRIBUTING.md) file for how to help out.

## Talks and Papers
**NeurIPS 2019:**
The slides of our presentation  can be found [here](docs/presentations/Captum_NeurIPS_2019_final.key)

**KDD 2020:**
The slides of our presentation from KDD 2020 tutorial can be found [here](https://pytorch-tutorial-assets.s3.amazonaws.com/Captum_KDD_2020.pdf).
You can watch the recorded talk [here](https://www.youtube.com/watch?v=hY_XzglTkak)

**GTC 2020:**
Opening Up the Black Box: Model Understanding with Captum and PyTorch.
You can watch the recorded talk [here](https://www.youtube.com/watch?v=0QLrRyLndFI)

**XAI Summit 2020:**
Using Captum and Fiddler to Improve Model Understanding with Explainable AI.
You can watch the recorded talk [here](https://www.youtube.com/watch?v=dvuVld5Hyc8)

**PyTorch Developer Day 2020**
Model Interpretability.
You can watch the recorded talk [here](https://www.youtube.com/watch?v=Lj5hHBGue58)

**NAACL 2021**
Tutorial on Fine-grained Interpretation and Causation Analysis in Deep NLP Models.
You can watch the recorded talk [here](https://www.youtube.com/watch?v=ayhBHZYjeqs
)

**ICLR 2021 workshop on Responsible AI**:
- [Paper](https://arxiv.org/abs/2009.07896) on the Captum Library
- [Paper](https://arxiv.org/abs/2106.07475) on Invesitgating Sanity Checks for Saliency Maps

## References of Algorithms

* `IntegratedGradients`, `LayerIntegratedGradients`: [Axiomatic Attribution for Deep Networks, Mukund Sundararajan et al. 2017](https://arxiv.org/abs/1703.01365) and [Did the Model Understand the Question?, Pramod K. Mudrakarta, et al. 2018](https://arxiv.org/abs/1805.05492)
* `InputXGradient`: [Not Just a Black Box: Learning Important Features Through Propagating Activation Differences, Avanti Shrikumar et al. 2016](https://arxiv.org/abs/1605.01713)
* `SmoothGrad`: [SmoothGrad: removing noise by adding noise, Daniel Smilkov et al. 2017](https://arxiv.org/abs/1706.03825)
* `NoiseTunnel`: [Sanity Checks for Saliency Maps, Julius Adebayo et al. 2018](https://arxiv.org/abs/1810.03292)
* `NeuronConductance`: [How Important is a neuron?, Kedar Dhamdhere et al. 2018](https://arxiv.org/abs/1805.12233)
* `LayerConductance`: [Computationally Efficient Measures of Internal Neuron Importance, Avanti Shrikumar et al. 2018](https://arxiv.org/abs/1807.09946)
* `DeepLift`, `NeuronDeepLift`, `LayerDeepLift`: [Learning Important Features Through Propagating Activation Differences, Avanti Shrikumar et al. 2017](https://arxiv.org/abs/1704.02685) and [Towards better understanding of gradient-based attribution methods for deep neural networks, Marco Ancona et al. 2018](https://openreview.net/pdf?id=Sy21R9JAW)
* `NeuronIntegratedGradients`: [Computationally Efficient Measures of Internal Neuron Importance, Avanti Shrikumar et al. 2018](https://arxiv.org/abs/1807.09946)
* `GradientShap`, `NeuronGradientShap`, `LayerGradientShap`, `DeepLiftShap`, `NeuronDeepLiftShap`, `LayerDeepLiftShap`: [A Unified Approach to Interpreting Model Predictions, Scott M. Lundberg et al. 2017](http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions)
* `InternalInfluence`: [Influence-Directed Explanations for Deep Convolutional Networks, Klas Leino et al. 2018](https://arxiv.org/abs/1802.03788)
* `Saliency`, `NeuronGradient`: [Deep Inside Convolutional Networks: Visualising
Image Classification Models and Saliency Maps, K. Simonyan, et. al. 2014](https://arxiv.org/abs/1312.6034)
* `GradCAM`, `Guided GradCAM`: [Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, Ramprasaath R. Selvaraju et al. 2017](https://arxiv.org/abs/1610.02391)
* `Deconvolution`, `Neuron Deconvolution`: [Visualizing and Understanding Convolutional Networks, Matthew D Zeiler et al. 2014](https://arxiv.org/abs/1311.2901)
* `Guided Backpropagation`, `Neuron Guided Backpropagation`: [Striving for Simplicity: The All Convolutional Net, Jost Tobias Springenberg et al. 2015](https://arxiv.org/abs/1412.6806)
* `Feature Permutation`: [Permutation Feature Importance](https://christophm.github.io/interpretable-ml-book/feature-importance.html)
* `Occlusion`: [Visualizing and Understanding Convolutional Networks](https://arxiv.org/abs/1311.2901)
* `Shapley Value`: [A value for n-person games. Contributions to the Theory of Games 2.28 (1953): 307-317](https://apps.dtic.mil/dtic/tr/fulltext/u2/604084.pdf)
* `Shapley Value Sampling`: [Polynomial calculation of the Shapley value based on sampling](https://www.sciencedirect.com/science/article/pii/S0305054808000804)
* `Infidelity and Sensitivity`: [On the (In)fidelity and Sensitivity for Explanations](https://arxiv.org/abs/1901.09392)

More details about the above mentioned [attribution algorithms](https://captum.ai/docs/attribution_algorithms) and their pros and cons can be found on our [web-site](https://captum.ai/docs/algorithms_comparison_matrix).

## License
Captum is BSD licensed, as found in the [LICENSE](LICENSE) file.


%package help
Summary:	Development documents and examples for captum
Provides:	python3-captum-doc
%description help
![Captum Logo](./website/static/img/captum_logo.png)

<hr/>

<!--- BADGES: START --->
[![GitHub - License](https://img.shields.io/github/license/pytorch/captum?logo=github&style=flat&color=green)][#github-license]
[![Conda](https://img.shields.io/conda/vn/pytorch/captum?logo=anaconda&style=flat&color=orange)](https://anaconda.org/pytorch/captum)
[![PyPI](https://img.shields.io/pypi/v/captum.svg)][#pypi-package]
[![CircleCI](https://circleci.com/gh/pytorch/captum.svg?style=shield)](https://circleci.com/gh/pytorch/captum)
[![Conda - Platform](https://img.shields.io/conda/pn/conda-forge/captum?logo=anaconda&style=flat)][#conda-forge-package]
[![Conda (channel only)](https://img.shields.io/conda/vn/conda-forge/captum?logo=anaconda&style=flat&color=orange)][#conda-forge-package]
[![Conda Recipe](https://img.shields.io/static/v1?logo=conda-forge&style=flat&color=green&label=recipe&message=captum)][#conda-forge-feedstock]
[![Docs - GitHub.io](https://img.shields.io/static/v1?logo=captum&style=flat&color=pink&label=docs&message=captum)][#docs-package]

[#github-license]: https://github.com/pytorch/captum/blob/master/LICENSE
[#pypi-package]: https://pypi.org/project/captum/
[#conda-forge-package]: https://anaconda.org/conda-forge/captum
[#conda-forge-feedstock]: https://github.com/conda-forge/captum-feedstock
[#docs-package]: https://captum.ai/
<!--- BADGES: END --->


Captum is a model interpretability and understanding library for PyTorch.
Captum means comprehension in Latin and contains general purpose implementations
of integrated gradients, saliency maps, smoothgrad, vargrad and others for
PyTorch models. It has quick integration for models built with domain-specific
libraries such as torchvision, torchtext, and others.

*Captum is currently in beta and under active development!*


#### About Captum

With the increase in model complexity and the resulting lack of transparency, model interpretability methods have become increasingly important. Model understanding is both an active area of research as well as an area of focus for practical applications across industries using machine learning. Captum provides state-of-the-art algorithms, including Integrated Gradients, to provide researchers and developers with an easy way to understand which features are contributing to a model’s output.

For model developers, Captum can be used to improve and troubleshoot models by facilitating the identification of different features that contribute to a model’s output in order to design better models and troubleshoot unexpected model outputs.

Captum helps ML researchers more easily implement interpretability algorithms that can interact with PyTorch models. Captum also allows researchers to quickly benchmark their work against other existing algorithms available in the library.

![Overview of Attribution Algorithms](./docs/Captum_Attribution_Algos.png)

#### Target Audience

The primary audiences for Captum are model developers who are looking to improve their models and understand which features are important and interpretability researchers focused on identifying algorithms that can better interpret many types of models.

Captum can also be used by application engineers who are using trained models in production. Captum provides easier troubleshooting through improved model interpretability, and the potential for delivering better explanations to end users on why they’re seeing a specific piece of content, such as a movie recommendation.

## Installation

**Installation Requirements**
- Python >= 3.6
- PyTorch >= 1.6


##### Installing the latest release

The latest release of Captum is easily installed either via
[Anaconda](https://www.anaconda.com/distribution/#download-section) (recommended) or via `pip`.

**with `conda`**

You can install captum from any of the following supported conda channels:

- channel: `pytorch`

  ```sh
  conda install captum -c pytorch
  ```

- channel: `conda-forge`

  ```sh
  conda install captum -c conda-forge
  ```

**With `pip`**

```bash
pip install captum
```

**Manual / Dev install**

If you'd like to try our bleeding edge features (and don't mind potentially
running into the occasional bug here or there), you can install the latest
master directly from GitHub. For a basic install, run:
```bash
git clone https://github.com/pytorch/captum.git
cd captum
pip install -e .
```

To customize the installation, you can also run the following variants of the
above:
* `pip install -e .[insights]`: Also installs all packages necessary for running Captum Insights.
* `pip install -e .[dev]`: Also installs all tools necessary for development
  (testing, linting, docs building; see [Contributing](#contributing) below).
* `pip install -e .[tutorials]`: Also installs all packages necessary for running the tutorial notebooks.

To execute unit tests from a manual install, run:
```bash
# running a single unit test
python -m unittest -v tests.attr.test_saliency
# running all unit tests
pytest -ra
```

## Getting Started
Captum helps you interpret and understand predictions of PyTorch models by
exploring features that contribute to a prediction the model makes.
It also helps understand which neurons and layers are important for
model predictions.

Let's apply some of those algorithms to a toy model we have created for
demonstration purposes.
For simplicity, we will use the following architecture, but users are welcome
to use any PyTorch model of their choice.


```python
import numpy as np

import torch
import torch.nn as nn

from captum.attr import (
    GradientShap,
    DeepLift,
    DeepLiftShap,
    IntegratedGradients,
    LayerConductance,
    NeuronConductance,
    NoiseTunnel,
)

class ToyModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.lin1 = nn.Linear(3, 3)
        self.relu = nn.ReLU()
        self.lin2 = nn.Linear(3, 2)

        # initialize weights and biases
        self.lin1.weight = nn.Parameter(torch.arange(-4.0, 5.0).view(3, 3))
        self.lin1.bias = nn.Parameter(torch.zeros(1,3))
        self.lin2.weight = nn.Parameter(torch.arange(-3.0, 3.0).view(2, 3))
        self.lin2.bias = nn.Parameter(torch.ones(1,2))

    def forward(self, input):
        return self.lin2(self.relu(self.lin1(input)))
```

Let's create an instance of our model and set it to eval mode.
```python
model = ToyModel()
model.eval()
```

Next, we need to define simple input and baseline tensors.
Baselines belong to the input space and often carry no predictive signal.
Zero tensor can serve as a baseline for many tasks.
Some interpretability algorithms such as `IntegratedGradients`, `Deeplift` and `GradientShap` are designed to attribute the change
between the input and baseline to a predictive class or a value that the neural
network outputs.

We will apply model interpretability algorithms on the network
mentioned above in order to understand the importance of individual
neurons/layers and the parts of the input that play an important role in the
final prediction.

To make computations deterministic, let's fix random seeds.

```python
torch.manual_seed(123)
np.random.seed(123)
```

Let's define our input and baseline tensors. Baselines are used in some
interpretability algorithms such as `IntegratedGradients, DeepLift,
GradientShap, NeuronConductance, LayerConductance, InternalInfluence` and
`NeuronIntegratedGradients`.

```python
input = torch.rand(2, 3)
baseline = torch.zeros(2, 3)
```
Next we will use `IntegratedGradients` algorithms to assign attribution
scores to each input feature with respect to the first target output.
```python
ig = IntegratedGradients(model)
attributions, delta = ig.attribute(input, baseline, target=0, return_convergence_delta=True)
print('IG Attributions:', attributions)
print('Convergence Delta:', delta)
```
Output:
```
IG Attributions: tensor([[-0.5922, -1.5497, -1.0067],
                         [ 0.0000, -0.2219, -5.1991]])
Convergence Delta: tensor([2.3842e-07, -4.7684e-07])
```
The algorithm outputs an attribution score for each input element and a
convergence delta. The lower the absolute value of the convergence delta the better
is the approximation. If we choose not to return delta,
we can simply not provide the `return_convergence_delta` input
argument. The absolute value of the returned deltas can be interpreted as an
approximation error for each input sample.
It can also serve as a proxy of how accurate the integral approximation for given
inputs and baselines is.
If the approximation error is large, we can try a larger number of integral
approximation steps by setting `n_steps` to a larger value. Not all algorithms
return approximation error. Those which do, though, compute it based on the
completeness property of the algorithms.

Positive attribution score means that the input in that particular position
positively contributed to the final prediction and negative means the opposite.
The magnitude of the attribution score signifies the strength of the contribution.
Zero attribution score means no contribution from that particular feature.

Similarly, we can apply `GradientShap`, `DeepLift` and other attribution algorithms to the model.

`GradientShap` first chooses a random baseline from baselines' distribution, then
 adds gaussian noise with std=0.09 to each input example `n_samples` times.
Afterwards, it chooses a random point between each example-baseline pair and
computes the gradients with respect to target class (in this case target=0). Resulting
attribution is the mean of gradients * (inputs - baselines)
```python
gs = GradientShap(model)

# We define a distribution of baselines and draw `n_samples` from that
# distribution in order to estimate the expectations of gradients across all baselines
baseline_dist = torch.randn(10, 3) * 0.001
attributions, delta = gs.attribute(input, stdevs=0.09, n_samples=4, baselines=baseline_dist,
                                   target=0, return_convergence_delta=True)
print('GradientShap Attributions:', attributions)
print('Convergence Delta:', delta)
```
Output
```
GradientShap Attributions: tensor([[-0.1542, -1.6229, -1.5835],
                                   [-0.3916, -0.2836, -4.6851]])
Convergence Delta: tensor([ 0.0000, -0.0005, -0.0029, -0.0084, -0.0087, -0.0405,  0.0000, -0.0084])

```
Deltas are computed for each `n_samples * input.shape[0]` example. The user can,
for instance, average them:
```python
deltas_per_example = torch.mean(delta.reshape(input.shape[0], -1), dim=1)
```
in order to get per example average delta.


Below is an example of how we can apply `DeepLift` and `DeepLiftShap` on the
`ToyModel` described above. The current implementation of DeepLift supports only the
`Rescale` rule.
For more details on alternative implementations, please see the [DeepLift paper](https://arxiv.org/abs/1704.02685).

```python
dl = DeepLift(model)
attributions, delta = dl.attribute(input, baseline, target=0, return_convergence_delta=True)
print('DeepLift Attributions:', attributions)
print('Convergence Delta:', delta)
```
Output
```
DeepLift Attributions: tensor([[-0.5922, -1.5497, -1.0067],
                               [ 0.0000, -0.2219, -5.1991])
Convergence Delta: tensor([0., 0.])
```
`DeepLift` assigns similar attribution scores as `IntegratedGradients` to inputs,
however it has lower execution time. Another important thing to remember about
DeepLift is that it currently doesn't support all non-linear activation types.
For more details on limitations of the current implementation, please see the
[DeepLift paper](https://arxiv.org/abs/1704.02685).

Similar to integrated gradients, DeepLift returns a convergence delta score
per input example. The approximation error is then the absolute
value of the convergence deltas and can serve as a proxy of how accurate the
algorithm's approximation is.

Now let's look into `DeepLiftShap`. Similar to `GradientShap`, `DeepLiftShap` uses
baseline distribution. In the example below, we use the same baseline distribution
as for `GradientShap`.

```python
dl = DeepLiftShap(model)
attributions, delta = dl.attribute(input, baseline_dist, target=0, return_convergence_delta=True)
print('DeepLiftSHAP Attributions:', attributions)
print('Convergence Delta:', delta)
```
Output
```
DeepLiftShap Attributions: tensor([[-5.9169e-01, -1.5491e+00, -1.0076e+00],
                                   [-4.7101e-03, -2.2300e-01, -5.1926e+00]], grad_fn=<MeanBackward1>)
Convergence Delta: tensor([-4.6120e-03, -1.6267e-03, -5.1045e-04, -1.4184e-03, -6.8886e-03,
                           -2.2224e-02,  0.0000e+00, -2.8790e-02, -4.1285e-03, -2.7295e-02,
                           -3.2349e-03, -1.6265e-03, -4.7684e-07, -1.4191e-03, -6.8889e-03,
                           -2.2224e-02,  0.0000e+00, -2.4792e-02, -4.1289e-03, -2.7296e-02])
```
`DeepLiftShap` uses `DeepLift` to compute attribution score for each
input-baseline pair and averages it for each input across all baselines.

It computes deltas for each input example-baseline pair, thus resulting to
`input.shape[0] * baseline.shape[0]` delta values.

Similar to GradientShap in order to compute example-based deltas we can average them per example:
```python
deltas_per_example = torch.mean(delta.reshape(input.shape[0], -1), dim=1)
```
In order to smooth and improve the quality of the attributions we can run
`IntegratedGradients` and other attribution methods through a `NoiseTunnel`.
`NoiseTunnel` allows us to use `SmoothGrad`, `SmoothGrad_Sq` and `VarGrad` techniques
to smoothen the attributions by aggregating them for multiple noisy
samples that were generated by adding gaussian noise.

Here is an example of how we can use `NoiseTunnel` with `IntegratedGradients`.

```python
ig = IntegratedGradients(model)
nt = NoiseTunnel(ig)
attributions, delta = nt.attribute(input, nt_type='smoothgrad', stdevs=0.02, nt_samples=4,
      baselines=baseline, target=0, return_convergence_delta=True)
print('IG + SmoothGrad Attributions:', attributions)
print('Convergence Delta:', delta)
```
Output
```
IG + SmoothGrad Attributions: tensor([[-0.4574, -1.5493, -1.0893],
                                      [ 0.0000, -0.2647, -5.1619]])
Convergence Delta: tensor([ 0.0000e+00,  2.3842e-07,  0.0000e+00, -2.3842e-07,  0.0000e+00,
        -4.7684e-07,  0.0000e+00, -4.7684e-07])

```
The number of elements in the `delta` tensor is equal to: `nt_samples * input.shape[0]`
In order to get an example-wise delta, we can, for example, average them:
```python
deltas_per_example = torch.mean(delta.reshape(input.shape[0], -1), dim=1)
```

Let's look into the internals of our network and understand which layers
and neurons are important for the predictions.

We will start with the `NeuronConductance`. `NeuronConductance` helps us to identify
input features that are important for a particular neuron in a given
layer. It decomposes the computation of integrated gradients via the chain rule by
defining the importance of a neuron as path integral of the derivative of the output
with respect to the neuron times the derivatives of the neuron with respect to the
inputs of the model.

In this case, we choose to analyze the first neuron in the linear layer.

```python
nc = NeuronConductance(model, model.lin1)
attributions = nc.attribute(input, neuron_selector=1, target=0)
print('Neuron Attributions:', attributions)
```
Output
```
Neuron Attributions: tensor([[ 0.0000,  0.0000,  0.0000],
                             [ 1.3358,  0.0000, -1.6811]])
```

Layer conductance shows the importance of neurons for a layer and given input.
It is an extension of path integrated gradients for hidden layers and holds the
completeness property as well.

It doesn't attribute the contribution scores to the input features
but shows the importance of each neuron in the selected layer.
```python
lc = LayerConductance(model, model.lin1)
attributions, delta = lc.attribute(input, baselines=baseline, target=0, return_convergence_delta=True)
print('Layer Attributions:', attributions)
print('Convergence Delta:', delta)
```
Outputs
```
Layer Attributions: tensor([[ 0.0000,  0.0000, -3.0856],
                            [ 0.0000, -0.3488, -4.9638]], grad_fn=<SumBackward1>)
Convergence Delta: tensor([0.0630, 0.1084])
```

Similar to other attribution algorithms that return convergence delta, `LayerConductance`
returns the deltas for each example. The approximation error is then the absolute
value of the convergence deltas and can serve as a proxy of how accurate integral
approximation for given inputs and baselines is.

More details on the list of supported algorithms and how to apply
Captum on different types of models can be found in our tutorials.


## Captum Insights

Captum provides a web interface called Insights for easy visualization and
access to a number of our interpretability algorithms.

To analyze a sample model on CIFAR10 via Captum Insights run

```
python -m captum.insights.example
```

and navigate to the URL specified in the output.

![Captum Insights Screenshot](./website/static/img/captum_insights_screenshot.png)

To build Insights you will need [Node](https://nodejs.org/en/) >= 8.x
and [Yarn](https://yarnpkg.com/en/) >= 1.5.

To build and launch from a checkout in a conda environment run

```
conda install -c conda-forge yarn
BUILD_INSIGHTS=1 python setup.py develop
python captum/insights/example.py
```

### Captum Insights Jupyter Widget
Captum Insights also has a Jupyter widget providing the same user interface as the web app.
To install and enable the widget, run

```
jupyter nbextension install --py --symlink --sys-prefix captum.insights.attr_vis.widget
jupyter nbextension enable captum.insights.attr_vis.widget --py --sys-prefix
```

To build the widget from a checkout in a conda environment run

```
conda install -c conda-forge yarn
BUILD_INSIGHTS=1 python setup.py develop
```

## FAQ
If you have questions about using Captum methods, please check this [FAQ](docs/faq.md), which addresses many common issues.

## Contributing
See the [CONTRIBUTING](CONTRIBUTING.md) file for how to help out.

## Talks and Papers
**NeurIPS 2019:**
The slides of our presentation  can be found [here](docs/presentations/Captum_NeurIPS_2019_final.key)

**KDD 2020:**
The slides of our presentation from KDD 2020 tutorial can be found [here](https://pytorch-tutorial-assets.s3.amazonaws.com/Captum_KDD_2020.pdf).
You can watch the recorded talk [here](https://www.youtube.com/watch?v=hY_XzglTkak)

**GTC 2020:**
Opening Up the Black Box: Model Understanding with Captum and PyTorch.
You can watch the recorded talk [here](https://www.youtube.com/watch?v=0QLrRyLndFI)

**XAI Summit 2020:**
Using Captum and Fiddler to Improve Model Understanding with Explainable AI.
You can watch the recorded talk [here](https://www.youtube.com/watch?v=dvuVld5Hyc8)

**PyTorch Developer Day 2020**
Model Interpretability.
You can watch the recorded talk [here](https://www.youtube.com/watch?v=Lj5hHBGue58)

**NAACL 2021**
Tutorial on Fine-grained Interpretation and Causation Analysis in Deep NLP Models.
You can watch the recorded talk [here](https://www.youtube.com/watch?v=ayhBHZYjeqs
)

**ICLR 2021 workshop on Responsible AI**:
- [Paper](https://arxiv.org/abs/2009.07896) on the Captum Library
- [Paper](https://arxiv.org/abs/2106.07475) on Invesitgating Sanity Checks for Saliency Maps

## References of Algorithms

* `IntegratedGradients`, `LayerIntegratedGradients`: [Axiomatic Attribution for Deep Networks, Mukund Sundararajan et al. 2017](https://arxiv.org/abs/1703.01365) and [Did the Model Understand the Question?, Pramod K. Mudrakarta, et al. 2018](https://arxiv.org/abs/1805.05492)
* `InputXGradient`: [Not Just a Black Box: Learning Important Features Through Propagating Activation Differences, Avanti Shrikumar et al. 2016](https://arxiv.org/abs/1605.01713)
* `SmoothGrad`: [SmoothGrad: removing noise by adding noise, Daniel Smilkov et al. 2017](https://arxiv.org/abs/1706.03825)
* `NoiseTunnel`: [Sanity Checks for Saliency Maps, Julius Adebayo et al. 2018](https://arxiv.org/abs/1810.03292)
* `NeuronConductance`: [How Important is a neuron?, Kedar Dhamdhere et al. 2018](https://arxiv.org/abs/1805.12233)
* `LayerConductance`: [Computationally Efficient Measures of Internal Neuron Importance, Avanti Shrikumar et al. 2018](https://arxiv.org/abs/1807.09946)
* `DeepLift`, `NeuronDeepLift`, `LayerDeepLift`: [Learning Important Features Through Propagating Activation Differences, Avanti Shrikumar et al. 2017](https://arxiv.org/abs/1704.02685) and [Towards better understanding of gradient-based attribution methods for deep neural networks, Marco Ancona et al. 2018](https://openreview.net/pdf?id=Sy21R9JAW)
* `NeuronIntegratedGradients`: [Computationally Efficient Measures of Internal Neuron Importance, Avanti Shrikumar et al. 2018](https://arxiv.org/abs/1807.09946)
* `GradientShap`, `NeuronGradientShap`, `LayerGradientShap`, `DeepLiftShap`, `NeuronDeepLiftShap`, `LayerDeepLiftShap`: [A Unified Approach to Interpreting Model Predictions, Scott M. Lundberg et al. 2017](http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions)
* `InternalInfluence`: [Influence-Directed Explanations for Deep Convolutional Networks, Klas Leino et al. 2018](https://arxiv.org/abs/1802.03788)
* `Saliency`, `NeuronGradient`: [Deep Inside Convolutional Networks: Visualising
Image Classification Models and Saliency Maps, K. Simonyan, et. al. 2014](https://arxiv.org/abs/1312.6034)
* `GradCAM`, `Guided GradCAM`: [Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, Ramprasaath R. Selvaraju et al. 2017](https://arxiv.org/abs/1610.02391)
* `Deconvolution`, `Neuron Deconvolution`: [Visualizing and Understanding Convolutional Networks, Matthew D Zeiler et al. 2014](https://arxiv.org/abs/1311.2901)
* `Guided Backpropagation`, `Neuron Guided Backpropagation`: [Striving for Simplicity: The All Convolutional Net, Jost Tobias Springenberg et al. 2015](https://arxiv.org/abs/1412.6806)
* `Feature Permutation`: [Permutation Feature Importance](https://christophm.github.io/interpretable-ml-book/feature-importance.html)
* `Occlusion`: [Visualizing and Understanding Convolutional Networks](https://arxiv.org/abs/1311.2901)
* `Shapley Value`: [A value for n-person games. Contributions to the Theory of Games 2.28 (1953): 307-317](https://apps.dtic.mil/dtic/tr/fulltext/u2/604084.pdf)
* `Shapley Value Sampling`: [Polynomial calculation of the Shapley value based on sampling](https://www.sciencedirect.com/science/article/pii/S0305054808000804)
* `Infidelity and Sensitivity`: [On the (In)fidelity and Sensitivity for Explanations](https://arxiv.org/abs/1901.09392)

More details about the above mentioned [attribution algorithms](https://captum.ai/docs/attribution_algorithms) and their pros and cons can be found on our [web-site](https://captum.ai/docs/algorithms_comparison_matrix).

## License
Captum is BSD licensed, as found in the [LICENSE](LICENSE) file.


%prep
%autosetup -n captum-0.6.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-captum -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 0.6.0-1
- Package Spec generated