summaryrefslogtreecommitdiff
path: root/python-carculator.spec
blob: 46eeb72b248e1cbbda86ef4059729c49468fb01d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
%global _empty_manifest_terminate_build 0
Name:		python-carculator
Version:	1.8.2
Release:	1
Summary:	Prospective life cycle assessment of vehicles made blazing fast
License:	BSD 3-Clause License  Copyright (c) 2020, Paul Scherrer Institut  Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:  * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.  * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.  * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
URL:		https://github.com/romainsacchi/carculator
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/4b/5a/07279103357557dd72b36f15aca8371ef058310ab647f2543b5589581590/carculator-1.8.2.tar.gz
BuildArch:	noarch

Requires:	python3-carculator-utils

%description
# ``carculator``

<p align="center">
  <img style="height:130px;" src="https://github.com/romainsacchi/carculator/blob/master/docs/_static/img/mediumsmall.png">
</p>

<p align="center">
  <a href="https://badge.fury.io/py/carculator" target="_blank"><img src="https://badge.fury.io/py/carculator.svg"></a>
  <a href="https://github.com/romainsacchi/carculator" target="_blank"><img src="https://github.com/romainsacchi/carculator/actions/workflows/main.yml/badge.svg?branch=master"></a>
  <a href="https://coveralls.io/github/romainsacchi/carculator" target="_blank"><img src="https://coveralls.io/repos/github/romainsacchi/carculator/badge.svg"></a>
  <a href="https://carculator.readthedocs.io/en/latest/" target="_blank"><img src="https://readthedocs.org/projects/carculator/badge/?version=latest"></a>
  <a href="https://doi.org/10.5281/zenodo.3778259"><img src="https://zenodo.org/badge/DOI/10.5281/zenodo.3778259.svg" alt="DOI"></a>
</p>

Prospective environmental and economic life cycle assessment of vehicles made blazing fast.

A fully parameterized Python model developed by the [Technology Assessment group](https://www.psi.ch/en/ta) of the
[Paul Scherrer Institut](https://www.psi.ch/en) to perform life cycle assessments (LCA) of passenger cars and light-duty vehicles.

See [the documentation](https://carculator.readthedocs.io/en/latest/index.html) for more detail, validation, etc.

See our [examples notebook](https://github.com/romainsacchi/carculator/blob/master/examples/Examples.ipynb) as well.

## Table of Contents

- [Background](#background)
  - [What is Life Cycle Assessment](#what-is-life-cycle-assessment)
  - [Why carculator](#why-carculator)
- [Install](#install)
- [Usage](#usage)
  - [As a Python library](#as-a-python-library)
  - [As a web app](#as-a-web-app)
- [Support](#support)
- [Maintainers](#maintainers)
- [Contributing](#contributing)
- [License](#license)

## Background

### What is Life Cycle Assessment?

Life Cycle Assessment (LCA) is a systematic way of accounting for environmental impacts along the relevant phases of the life of a product or service.
Typically, the LCA of a passenger vehicle includes the raw material extraction, the manufacture of the vehicle, its distribution, use and maintenance, as well as its disposal.
The compiled inventories of material and energy required along the life cycle of the vehicle is characterized against some impact categories (e.g., climate change).

In the research field of mobility, LCA is widely used to investigate the superiority of a technology over another one.

### Why ``carculator``?

``carculator`` allows to:
* produce [life cycle assessment (LCA)](https://en.wikipedia.org/wiki/Life-cycle_assessment) results that include conventional midpoint impact assessment indicators as well cost indicators
*  ``carculator`` uses time- and energy scenario-differentiated background inventories for the future, based on outputs of Integrated Asessment Model [REMIND](https://www.pik-potsdam.de/research/transformation-pathways/models/remind/remind). 
* calculate hot pollutant and noise emissions based on a specified driving cycle
* produce error propagation analyzes (i.e., Monte Carlo) while preserving relations between inputs and outputs
* control all the parameters sensitive to the foreground model (i.e., the vehicles) but also to the background model
(i.e., supply of fuel, battery chemistry, etc.)
* and easily export the vehicle models as inventories to be further imported in the [Brightway2](https://brightwaylca.org/) LCA framework
  or the [SimaPro](https://www.simapro.com/) LCA software.

``carculator`` integrates well with the [Brightway](https://brightwaylca.org/) LCA framework.

``carculator`` was built based on work described in [Uncertain environmental footprint of current and future battery electric vehicles by Cox, et al (2018)](https://pubs.acs.org/doi/abs/10.1021/acs.est.8b00261).

## Install

``carculator`` is at an early stage of development and is subject to continuous change and improvement.
Three ways of installing ``carculator`` are suggested.

We recommend the installation on **Python 3.7 or above**.

### Installation of the latest version, using conda

    conda install -c romainsacchi carculator

### Installation of a stable release from Pypi

    pip install carculator

## Usage

### As a Python library

Calculate the fuel efficiency (or ``Tank to wheel`` energy requirement) in km/L of petrol-equivalent of current SUVs for the driving cycle WLTC 3.4
over 800 Monte Carlo iterations:

```python

    from carculator import *
    import matplotlib.pyplot as plt
    
    cip = CarInputParameters()
    cip.stochastic(800)
    dcts, array = fill_xarray_from_input_parameters(cip)
    cm = CarModel(array, cycle='WLTC 3.4')
    cm.set_all()
    TtW_energy = 1 / (cm.array.sel(size='SUV', year=2020, parameter='TtW energy') / 42000)  # assuming 42 MJ/L petrol
    
    l_powertrains = TtW_energy.powertrain
    [plt.hist(e, bins=50, alpha=.8, label=e.powertrain.values) for e in TtW_energy]
    plt.xlabel('km/L petrol-equivalent')
    plt.ylabel('number of iterations')
    plt.legend()
```

![MC results](https://github.com/romainsacchi/carculator/blob/master/docs/_static/img/stochastic_example_ttw.png)

Compare the carbon footprint of electric vehicles with that of rechargeable hybrid vehicles for different size categories today and in the future
over 500 Monte Carlo iterations:

```python

    from carculator import *
    cip = CarInputParameters()
    cip.stochastic(500)
    dcts, array = fill_xarray_from_input_parameters(cip)
    cm = CarModel(array, cycle='WLTC')
    cm.set_all()
    scope = {
      'powertrain': ['BEV', 'PHEV'],
    }
    ic = InventoryCalculation(cm)
    
    results = ic.calculate_impacts()
    data_MC = results.sel(impact_category='climate change').sum(axis=3).to_dataframe('climate change')
    plt.style.use('seaborn')
    data_MC.unstack(level=[0, 1, 2]).boxplot(showfliers=False, figsize=(20, 5))
    plt.xticks(rotation=70)
    plt.ylabel('kg CO2-eq./vkm')
```

![MC results](https://github.com/romainsacchi/carculator/blob/master/docs/_static/img/example_stochastic_BEV_PHEV.png)

For more examples, see [examples](https://github.com/romainsacchi/carculator/blob/master/examples/Examples.ipynb).

## As a Web app

``carculator`` has a [graphical user interface](https://carculator.psi.ch) for fast comparisons of vehicles.

## Support

Do not hesitate to contact the development team at [carculator@psi.ch](mailto:carculator@psi.ch).

## Maintainers

* [Romain Sacchi](https://github.com/romainsacchi)
* [Chris Mutel](https://github.com/cmutel/)

## Contributing

See [contributing](https://github.com/romainsacchi/carculator/blob/master/CONTRIBUTING.md).

## License

[BSD-3-Clause](https://github.com/romainsacchi/carculator/blob/master/LICENSE). Copyright 2023 Paul Scherrer Institut.


%package -n python3-carculator
Summary:	Prospective life cycle assessment of vehicles made blazing fast
Provides:	python-carculator
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-carculator
# ``carculator``

<p align="center">
  <img style="height:130px;" src="https://github.com/romainsacchi/carculator/blob/master/docs/_static/img/mediumsmall.png">
</p>

<p align="center">
  <a href="https://badge.fury.io/py/carculator" target="_blank"><img src="https://badge.fury.io/py/carculator.svg"></a>
  <a href="https://github.com/romainsacchi/carculator" target="_blank"><img src="https://github.com/romainsacchi/carculator/actions/workflows/main.yml/badge.svg?branch=master"></a>
  <a href="https://coveralls.io/github/romainsacchi/carculator" target="_blank"><img src="https://coveralls.io/repos/github/romainsacchi/carculator/badge.svg"></a>
  <a href="https://carculator.readthedocs.io/en/latest/" target="_blank"><img src="https://readthedocs.org/projects/carculator/badge/?version=latest"></a>
  <a href="https://doi.org/10.5281/zenodo.3778259"><img src="https://zenodo.org/badge/DOI/10.5281/zenodo.3778259.svg" alt="DOI"></a>
</p>

Prospective environmental and economic life cycle assessment of vehicles made blazing fast.

A fully parameterized Python model developed by the [Technology Assessment group](https://www.psi.ch/en/ta) of the
[Paul Scherrer Institut](https://www.psi.ch/en) to perform life cycle assessments (LCA) of passenger cars and light-duty vehicles.

See [the documentation](https://carculator.readthedocs.io/en/latest/index.html) for more detail, validation, etc.

See our [examples notebook](https://github.com/romainsacchi/carculator/blob/master/examples/Examples.ipynb) as well.

## Table of Contents

- [Background](#background)
  - [What is Life Cycle Assessment](#what-is-life-cycle-assessment)
  - [Why carculator](#why-carculator)
- [Install](#install)
- [Usage](#usage)
  - [As a Python library](#as-a-python-library)
  - [As a web app](#as-a-web-app)
- [Support](#support)
- [Maintainers](#maintainers)
- [Contributing](#contributing)
- [License](#license)

## Background

### What is Life Cycle Assessment?

Life Cycle Assessment (LCA) is a systematic way of accounting for environmental impacts along the relevant phases of the life of a product or service.
Typically, the LCA of a passenger vehicle includes the raw material extraction, the manufacture of the vehicle, its distribution, use and maintenance, as well as its disposal.
The compiled inventories of material and energy required along the life cycle of the vehicle is characterized against some impact categories (e.g., climate change).

In the research field of mobility, LCA is widely used to investigate the superiority of a technology over another one.

### Why ``carculator``?

``carculator`` allows to:
* produce [life cycle assessment (LCA)](https://en.wikipedia.org/wiki/Life-cycle_assessment) results that include conventional midpoint impact assessment indicators as well cost indicators
*  ``carculator`` uses time- and energy scenario-differentiated background inventories for the future, based on outputs of Integrated Asessment Model [REMIND](https://www.pik-potsdam.de/research/transformation-pathways/models/remind/remind). 
* calculate hot pollutant and noise emissions based on a specified driving cycle
* produce error propagation analyzes (i.e., Monte Carlo) while preserving relations between inputs and outputs
* control all the parameters sensitive to the foreground model (i.e., the vehicles) but also to the background model
(i.e., supply of fuel, battery chemistry, etc.)
* and easily export the vehicle models as inventories to be further imported in the [Brightway2](https://brightwaylca.org/) LCA framework
  or the [SimaPro](https://www.simapro.com/) LCA software.

``carculator`` integrates well with the [Brightway](https://brightwaylca.org/) LCA framework.

``carculator`` was built based on work described in [Uncertain environmental footprint of current and future battery electric vehicles by Cox, et al (2018)](https://pubs.acs.org/doi/abs/10.1021/acs.est.8b00261).

## Install

``carculator`` is at an early stage of development and is subject to continuous change and improvement.
Three ways of installing ``carculator`` are suggested.

We recommend the installation on **Python 3.7 or above**.

### Installation of the latest version, using conda

    conda install -c romainsacchi carculator

### Installation of a stable release from Pypi

    pip install carculator

## Usage

### As a Python library

Calculate the fuel efficiency (or ``Tank to wheel`` energy requirement) in km/L of petrol-equivalent of current SUVs for the driving cycle WLTC 3.4
over 800 Monte Carlo iterations:

```python

    from carculator import *
    import matplotlib.pyplot as plt
    
    cip = CarInputParameters()
    cip.stochastic(800)
    dcts, array = fill_xarray_from_input_parameters(cip)
    cm = CarModel(array, cycle='WLTC 3.4')
    cm.set_all()
    TtW_energy = 1 / (cm.array.sel(size='SUV', year=2020, parameter='TtW energy') / 42000)  # assuming 42 MJ/L petrol
    
    l_powertrains = TtW_energy.powertrain
    [plt.hist(e, bins=50, alpha=.8, label=e.powertrain.values) for e in TtW_energy]
    plt.xlabel('km/L petrol-equivalent')
    plt.ylabel('number of iterations')
    plt.legend()
```

![MC results](https://github.com/romainsacchi/carculator/blob/master/docs/_static/img/stochastic_example_ttw.png)

Compare the carbon footprint of electric vehicles with that of rechargeable hybrid vehicles for different size categories today and in the future
over 500 Monte Carlo iterations:

```python

    from carculator import *
    cip = CarInputParameters()
    cip.stochastic(500)
    dcts, array = fill_xarray_from_input_parameters(cip)
    cm = CarModel(array, cycle='WLTC')
    cm.set_all()
    scope = {
      'powertrain': ['BEV', 'PHEV'],
    }
    ic = InventoryCalculation(cm)
    
    results = ic.calculate_impacts()
    data_MC = results.sel(impact_category='climate change').sum(axis=3).to_dataframe('climate change')
    plt.style.use('seaborn')
    data_MC.unstack(level=[0, 1, 2]).boxplot(showfliers=False, figsize=(20, 5))
    plt.xticks(rotation=70)
    plt.ylabel('kg CO2-eq./vkm')
```

![MC results](https://github.com/romainsacchi/carculator/blob/master/docs/_static/img/example_stochastic_BEV_PHEV.png)

For more examples, see [examples](https://github.com/romainsacchi/carculator/blob/master/examples/Examples.ipynb).

## As a Web app

``carculator`` has a [graphical user interface](https://carculator.psi.ch) for fast comparisons of vehicles.

## Support

Do not hesitate to contact the development team at [carculator@psi.ch](mailto:carculator@psi.ch).

## Maintainers

* [Romain Sacchi](https://github.com/romainsacchi)
* [Chris Mutel](https://github.com/cmutel/)

## Contributing

See [contributing](https://github.com/romainsacchi/carculator/blob/master/CONTRIBUTING.md).

## License

[BSD-3-Clause](https://github.com/romainsacchi/carculator/blob/master/LICENSE). Copyright 2023 Paul Scherrer Institut.


%package help
Summary:	Development documents and examples for carculator
Provides:	python3-carculator-doc
%description help
# ``carculator``

<p align="center">
  <img style="height:130px;" src="https://github.com/romainsacchi/carculator/blob/master/docs/_static/img/mediumsmall.png">
</p>

<p align="center">
  <a href="https://badge.fury.io/py/carculator" target="_blank"><img src="https://badge.fury.io/py/carculator.svg"></a>
  <a href="https://github.com/romainsacchi/carculator" target="_blank"><img src="https://github.com/romainsacchi/carculator/actions/workflows/main.yml/badge.svg?branch=master"></a>
  <a href="https://coveralls.io/github/romainsacchi/carculator" target="_blank"><img src="https://coveralls.io/repos/github/romainsacchi/carculator/badge.svg"></a>
  <a href="https://carculator.readthedocs.io/en/latest/" target="_blank"><img src="https://readthedocs.org/projects/carculator/badge/?version=latest"></a>
  <a href="https://doi.org/10.5281/zenodo.3778259"><img src="https://zenodo.org/badge/DOI/10.5281/zenodo.3778259.svg" alt="DOI"></a>
</p>

Prospective environmental and economic life cycle assessment of vehicles made blazing fast.

A fully parameterized Python model developed by the [Technology Assessment group](https://www.psi.ch/en/ta) of the
[Paul Scherrer Institut](https://www.psi.ch/en) to perform life cycle assessments (LCA) of passenger cars and light-duty vehicles.

See [the documentation](https://carculator.readthedocs.io/en/latest/index.html) for more detail, validation, etc.

See our [examples notebook](https://github.com/romainsacchi/carculator/blob/master/examples/Examples.ipynb) as well.

## Table of Contents

- [Background](#background)
  - [What is Life Cycle Assessment](#what-is-life-cycle-assessment)
  - [Why carculator](#why-carculator)
- [Install](#install)
- [Usage](#usage)
  - [As a Python library](#as-a-python-library)
  - [As a web app](#as-a-web-app)
- [Support](#support)
- [Maintainers](#maintainers)
- [Contributing](#contributing)
- [License](#license)

## Background

### What is Life Cycle Assessment?

Life Cycle Assessment (LCA) is a systematic way of accounting for environmental impacts along the relevant phases of the life of a product or service.
Typically, the LCA of a passenger vehicle includes the raw material extraction, the manufacture of the vehicle, its distribution, use and maintenance, as well as its disposal.
The compiled inventories of material and energy required along the life cycle of the vehicle is characterized against some impact categories (e.g., climate change).

In the research field of mobility, LCA is widely used to investigate the superiority of a technology over another one.

### Why ``carculator``?

``carculator`` allows to:
* produce [life cycle assessment (LCA)](https://en.wikipedia.org/wiki/Life-cycle_assessment) results that include conventional midpoint impact assessment indicators as well cost indicators
*  ``carculator`` uses time- and energy scenario-differentiated background inventories for the future, based on outputs of Integrated Asessment Model [REMIND](https://www.pik-potsdam.de/research/transformation-pathways/models/remind/remind). 
* calculate hot pollutant and noise emissions based on a specified driving cycle
* produce error propagation analyzes (i.e., Monte Carlo) while preserving relations between inputs and outputs
* control all the parameters sensitive to the foreground model (i.e., the vehicles) but also to the background model
(i.e., supply of fuel, battery chemistry, etc.)
* and easily export the vehicle models as inventories to be further imported in the [Brightway2](https://brightwaylca.org/) LCA framework
  or the [SimaPro](https://www.simapro.com/) LCA software.

``carculator`` integrates well with the [Brightway](https://brightwaylca.org/) LCA framework.

``carculator`` was built based on work described in [Uncertain environmental footprint of current and future battery electric vehicles by Cox, et al (2018)](https://pubs.acs.org/doi/abs/10.1021/acs.est.8b00261).

## Install

``carculator`` is at an early stage of development and is subject to continuous change and improvement.
Three ways of installing ``carculator`` are suggested.

We recommend the installation on **Python 3.7 or above**.

### Installation of the latest version, using conda

    conda install -c romainsacchi carculator

### Installation of a stable release from Pypi

    pip install carculator

## Usage

### As a Python library

Calculate the fuel efficiency (or ``Tank to wheel`` energy requirement) in km/L of petrol-equivalent of current SUVs for the driving cycle WLTC 3.4
over 800 Monte Carlo iterations:

```python

    from carculator import *
    import matplotlib.pyplot as plt
    
    cip = CarInputParameters()
    cip.stochastic(800)
    dcts, array = fill_xarray_from_input_parameters(cip)
    cm = CarModel(array, cycle='WLTC 3.4')
    cm.set_all()
    TtW_energy = 1 / (cm.array.sel(size='SUV', year=2020, parameter='TtW energy') / 42000)  # assuming 42 MJ/L petrol
    
    l_powertrains = TtW_energy.powertrain
    [plt.hist(e, bins=50, alpha=.8, label=e.powertrain.values) for e in TtW_energy]
    plt.xlabel('km/L petrol-equivalent')
    plt.ylabel('number of iterations')
    plt.legend()
```

![MC results](https://github.com/romainsacchi/carculator/blob/master/docs/_static/img/stochastic_example_ttw.png)

Compare the carbon footprint of electric vehicles with that of rechargeable hybrid vehicles for different size categories today and in the future
over 500 Monte Carlo iterations:

```python

    from carculator import *
    cip = CarInputParameters()
    cip.stochastic(500)
    dcts, array = fill_xarray_from_input_parameters(cip)
    cm = CarModel(array, cycle='WLTC')
    cm.set_all()
    scope = {
      'powertrain': ['BEV', 'PHEV'],
    }
    ic = InventoryCalculation(cm)
    
    results = ic.calculate_impacts()
    data_MC = results.sel(impact_category='climate change').sum(axis=3).to_dataframe('climate change')
    plt.style.use('seaborn')
    data_MC.unstack(level=[0, 1, 2]).boxplot(showfliers=False, figsize=(20, 5))
    plt.xticks(rotation=70)
    plt.ylabel('kg CO2-eq./vkm')
```

![MC results](https://github.com/romainsacchi/carculator/blob/master/docs/_static/img/example_stochastic_BEV_PHEV.png)

For more examples, see [examples](https://github.com/romainsacchi/carculator/blob/master/examples/Examples.ipynb).

## As a Web app

``carculator`` has a [graphical user interface](https://carculator.psi.ch) for fast comparisons of vehicles.

## Support

Do not hesitate to contact the development team at [carculator@psi.ch](mailto:carculator@psi.ch).

## Maintainers

* [Romain Sacchi](https://github.com/romainsacchi)
* [Chris Mutel](https://github.com/cmutel/)

## Contributing

See [contributing](https://github.com/romainsacchi/carculator/blob/master/CONTRIBUTING.md).

## License

[BSD-3-Clause](https://github.com/romainsacchi/carculator/blob/master/LICENSE). Copyright 2023 Paul Scherrer Institut.


%prep
%autosetup -n carculator-1.8.2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-carculator -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 1.8.2-1
- Package Spec generated