1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
|
%global _empty_manifest_terminate_build 0
Name: python-carling
Version: 0.3.5
Release: 1
Summary: Useful transforms for supporting apache beam pipelines.
License: Apache-2.0
URL: https://github.com/mc-digital/carling
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/61/ff/8fa7ff0dce0f7f87488ffa0f8f5b3b6d57dd8ff7f6cd0f7d47dd4808aab3/carling-0.3.5.tar.gz
BuildArch: noarch
Requires: python3-apache-beam
Requires: python3-deepdiff
%description
# Carling
[](https://github.com/mc-digital/carling/actions?query=workflow%3ACI)
[](https://pypi.org/project/carling/)
[](https://pypi.org/project/carling/)
[](https://github.com/mc-digital/carling/blob/main/LICENSE)
Via [Wikipedia](<https://en.wikipedia.org/wiki/Carling_(sailing)>):
> Carlings are pieces of timber laid fore and aft under the deck of a ship, from one beam to another.
> They serve as a foundation for the whole body of the ship.
Useful transforms for supporting our apache beam pipelines.
## Mapping transform utils
#### `carling.Label`
Labels all elements.
#### `carling.Select`
Removes all columns which are not specified in `*keys`.
#### `carling.Project`
Transforms each element into a tuple of values of the specified columns.
#### `carling.IndexBy`
Transforms each element `V` into a tuple `(K, V)`.
`K` is the projection of `V` by `*keys`, which is equal to the tuple
produced by the `Project` transform.
#### `carling.Stringify`
Transforms each element into its JSON representation.
#### `carling.IndexBySingle`
Transforms each element `V` into a tuple `(K, V)`.
The difference between `IndexBySingle(key)` and `IndexBy(key)` with a single
key is as follows:
- `IndexBySingle` produces the index as a plain value.
- `IndexBy` produces the index as a single-element tuple.
#### `carling.RenameFromTo`
Rename columns according to `from_to_key_mapping`.
#### `carling.Exclude`
Removes all columns specified in `*keys`.
## Grouping transform utils
Generic grouping transform utils
#### `carling.UniqueOnly`
Produces elements that are the only elements per key after deduplication.
Given a `PCollection` of `(K, V)`,
this transform produces the collection of all `V`s that do not share
the same corresponding `K`s with any other elements after deduplicating
all equivalent `(K, V)` pairs.
This transform is equivalent to `SingletonOnly` with `apache_beam.Distinct`.
`[(1, "A"), (2, "B1"), (2, "B2"), (3, "C"), (3, "C"), (4, "A")]` will be
transformed into `["A", "C", "A"]`.
#### `carling.SingletonOnly`
Produces elements that are the only elements per key.
Given a `PCollection` of `(K, V)`,
this transform produces the collection of all `V`s that do not share
the same corresponding `K`s with any other elements.
`[(1, "A"), (2, "B1"), (2, "B2"), (3, "C"), (3, "C"), (4, "A")]` will be
transformed into `["A", "A"]`.
#### `carling.Intersection`
Produces the intersection of given `PCollection`s.
Given a list of `PCollection`s,
this transform produces every element that appears in all collections of
the list.
Elements are deduplicated before taking the intersection.
#### `carling.FilterByKey`
Filters elements by their keys.
The constructor receives one or more `PCollection`s of `K`s,
which are regarded as key lists.
Given a `PCollection` of `(K, V)`,
this transform discards all elements with `K`s that do not appear
in the key lists.
If multiple collections are given to the constructor,
this transform treats the intersection of them as the key list.
#### `carling.FilterByKeyUsingSideInput`
Filters a single collection by a single lookup collection, using a common key.
Given: - a `PCollection` (lookup_entries) of `(V)`, as a lookup collection - a `PCollection` (pcoll) of `(V)`, as values to be filtered - a common key (filter_key)
A dictionary called `filter_dict` - is created by mapping the value of `filter_key`
for each entry in `lookup_entries` to True.
Then, for each item in pcoll, the value associated with `filter_key` checkd against
`filter_dict`, and if it is found, the entry passes through. Otherwise, the entry is
discarded.
Note: `lookup_entries` will be used as a **side input**, so care
must be taken regarding the size of the `lookup_entries`
#### `carling.DifferencePerKey`
Produces the difference per key between two `PCollection`s.
Given two `PCollection`s of `V`,
this transform indexes the collections by the specified keys `primary_keys`,
compares corresponding two `V` lists for every `K`,
and produces the difference per `K`.
If there is no difference, this transform produces nothing.
Two `V` lists are considered to be different if the numbers of elements
differ or two elements of the lists with a same index differ
at one of the specified columns `columns`.
#### `carling.SortedSelectPerKey`
- Groups items by a set of `keys` -- column names per row
- Emits the "MAX" _value_ for each collection as defined by the `key_fn`
- Can emit "MIN" by passing `reverse=True` kwarg
#### `carling.PartitionRowsContainingNone`
Emits two tagged PCollections:
- Default (`result[None]`): Rows are guaranteed not to have any `None` values
- `result["contains_none"]`: Rows for which at least one column had a `None` value
## Categorical
#### `carling.CreateCategoricalDicts`
For a set of columnular data inputs this function takes:
- cat_cols:
Type: `[str]`
An array of "categorical" columns
- existing_dicts:
Type: `PCollection[(string, string, int)]`
Rows of tuples of type:
(column, previously_seen_value, mapped_unique_int)
Mapping a set of "previously seen" keys to unique int values for each
column.
Not optional.
If none exist, pass an empty PCollection.
It then creates a transform which takes a pcollection and
- looks at the input pcoll for unseen values in each categorical column
- creates new unique integers for each distinct unseen value, starting at max(previous value for column)+1
- ammends the existing mappings with (col, unseen_value, new_unique_int)
Output is:
- Type: `PCollection[(string, string, int)]`
This is useful for preparing data to be trained by eg. LightGBM
#### `carling.ReplaceCategoricalColumns`
- Utilizes the "categorical dictionary rows" generated by `CreateCategoricalDicts` which is a list of pairs of type of `(column, value,unique_int)`.
- Replaces each column with the appropriate value found in the mapping.
## Test Utils
#### `carling.test_utils.pprint_equal_to`
This module contains the `equal_to` function from apache beam, but adapted to output results using pretty print. Reading the results as a large, unformatted string makes it harder to pick out what changed/is missing.
## General Util
#### `carling.LogSample`
Print items of the given `PCollection` to the log.
`LogSample` prints the JSON representations of the input items to the Python's
standard logging system.
To avoid too much log entries being printed, `LogSample` limits the number of
logged items. The constructor parameter `n` determines the limit.
By default, `LogSample` prints logs with the `INFO` log level. The constructor
parameter `level` determines the level.
#### `carling.ReifyMultiValueOption`
Prepares multi-value delimited options. Useful in contexts where
you want to create a multi-value option in a template environment.
- inputs:
- delimited string option
- optional delimiter string (default is "|")
* output:
- Type: `PCollection[str]`
%package -n python3-carling
Summary: Useful transforms for supporting apache beam pipelines.
Provides: python-carling
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-carling
# Carling
[](https://github.com/mc-digital/carling/actions?query=workflow%3ACI)
[](https://pypi.org/project/carling/)
[](https://pypi.org/project/carling/)
[](https://github.com/mc-digital/carling/blob/main/LICENSE)
Via [Wikipedia](<https://en.wikipedia.org/wiki/Carling_(sailing)>):
> Carlings are pieces of timber laid fore and aft under the deck of a ship, from one beam to another.
> They serve as a foundation for the whole body of the ship.
Useful transforms for supporting our apache beam pipelines.
## Mapping transform utils
#### `carling.Label`
Labels all elements.
#### `carling.Select`
Removes all columns which are not specified in `*keys`.
#### `carling.Project`
Transforms each element into a tuple of values of the specified columns.
#### `carling.IndexBy`
Transforms each element `V` into a tuple `(K, V)`.
`K` is the projection of `V` by `*keys`, which is equal to the tuple
produced by the `Project` transform.
#### `carling.Stringify`
Transforms each element into its JSON representation.
#### `carling.IndexBySingle`
Transforms each element `V` into a tuple `(K, V)`.
The difference between `IndexBySingle(key)` and `IndexBy(key)` with a single
key is as follows:
- `IndexBySingle` produces the index as a plain value.
- `IndexBy` produces the index as a single-element tuple.
#### `carling.RenameFromTo`
Rename columns according to `from_to_key_mapping`.
#### `carling.Exclude`
Removes all columns specified in `*keys`.
## Grouping transform utils
Generic grouping transform utils
#### `carling.UniqueOnly`
Produces elements that are the only elements per key after deduplication.
Given a `PCollection` of `(K, V)`,
this transform produces the collection of all `V`s that do not share
the same corresponding `K`s with any other elements after deduplicating
all equivalent `(K, V)` pairs.
This transform is equivalent to `SingletonOnly` with `apache_beam.Distinct`.
`[(1, "A"), (2, "B1"), (2, "B2"), (3, "C"), (3, "C"), (4, "A")]` will be
transformed into `["A", "C", "A"]`.
#### `carling.SingletonOnly`
Produces elements that are the only elements per key.
Given a `PCollection` of `(K, V)`,
this transform produces the collection of all `V`s that do not share
the same corresponding `K`s with any other elements.
`[(1, "A"), (2, "B1"), (2, "B2"), (3, "C"), (3, "C"), (4, "A")]` will be
transformed into `["A", "A"]`.
#### `carling.Intersection`
Produces the intersection of given `PCollection`s.
Given a list of `PCollection`s,
this transform produces every element that appears in all collections of
the list.
Elements are deduplicated before taking the intersection.
#### `carling.FilterByKey`
Filters elements by their keys.
The constructor receives one or more `PCollection`s of `K`s,
which are regarded as key lists.
Given a `PCollection` of `(K, V)`,
this transform discards all elements with `K`s that do not appear
in the key lists.
If multiple collections are given to the constructor,
this transform treats the intersection of them as the key list.
#### `carling.FilterByKeyUsingSideInput`
Filters a single collection by a single lookup collection, using a common key.
Given: - a `PCollection` (lookup_entries) of `(V)`, as a lookup collection - a `PCollection` (pcoll) of `(V)`, as values to be filtered - a common key (filter_key)
A dictionary called `filter_dict` - is created by mapping the value of `filter_key`
for each entry in `lookup_entries` to True.
Then, for each item in pcoll, the value associated with `filter_key` checkd against
`filter_dict`, and if it is found, the entry passes through. Otherwise, the entry is
discarded.
Note: `lookup_entries` will be used as a **side input**, so care
must be taken regarding the size of the `lookup_entries`
#### `carling.DifferencePerKey`
Produces the difference per key between two `PCollection`s.
Given two `PCollection`s of `V`,
this transform indexes the collections by the specified keys `primary_keys`,
compares corresponding two `V` lists for every `K`,
and produces the difference per `K`.
If there is no difference, this transform produces nothing.
Two `V` lists are considered to be different if the numbers of elements
differ or two elements of the lists with a same index differ
at one of the specified columns `columns`.
#### `carling.SortedSelectPerKey`
- Groups items by a set of `keys` -- column names per row
- Emits the "MAX" _value_ for each collection as defined by the `key_fn`
- Can emit "MIN" by passing `reverse=True` kwarg
#### `carling.PartitionRowsContainingNone`
Emits two tagged PCollections:
- Default (`result[None]`): Rows are guaranteed not to have any `None` values
- `result["contains_none"]`: Rows for which at least one column had a `None` value
## Categorical
#### `carling.CreateCategoricalDicts`
For a set of columnular data inputs this function takes:
- cat_cols:
Type: `[str]`
An array of "categorical" columns
- existing_dicts:
Type: `PCollection[(string, string, int)]`
Rows of tuples of type:
(column, previously_seen_value, mapped_unique_int)
Mapping a set of "previously seen" keys to unique int values for each
column.
Not optional.
If none exist, pass an empty PCollection.
It then creates a transform which takes a pcollection and
- looks at the input pcoll for unseen values in each categorical column
- creates new unique integers for each distinct unseen value, starting at max(previous value for column)+1
- ammends the existing mappings with (col, unseen_value, new_unique_int)
Output is:
- Type: `PCollection[(string, string, int)]`
This is useful for preparing data to be trained by eg. LightGBM
#### `carling.ReplaceCategoricalColumns`
- Utilizes the "categorical dictionary rows" generated by `CreateCategoricalDicts` which is a list of pairs of type of `(column, value,unique_int)`.
- Replaces each column with the appropriate value found in the mapping.
## Test Utils
#### `carling.test_utils.pprint_equal_to`
This module contains the `equal_to` function from apache beam, but adapted to output results using pretty print. Reading the results as a large, unformatted string makes it harder to pick out what changed/is missing.
## General Util
#### `carling.LogSample`
Print items of the given `PCollection` to the log.
`LogSample` prints the JSON representations of the input items to the Python's
standard logging system.
To avoid too much log entries being printed, `LogSample` limits the number of
logged items. The constructor parameter `n` determines the limit.
By default, `LogSample` prints logs with the `INFO` log level. The constructor
parameter `level` determines the level.
#### `carling.ReifyMultiValueOption`
Prepares multi-value delimited options. Useful in contexts where
you want to create a multi-value option in a template environment.
- inputs:
- delimited string option
- optional delimiter string (default is "|")
* output:
- Type: `PCollection[str]`
%package help
Summary: Development documents and examples for carling
Provides: python3-carling-doc
%description help
# Carling
[](https://github.com/mc-digital/carling/actions?query=workflow%3ACI)
[](https://pypi.org/project/carling/)
[](https://pypi.org/project/carling/)
[](https://github.com/mc-digital/carling/blob/main/LICENSE)
Via [Wikipedia](<https://en.wikipedia.org/wiki/Carling_(sailing)>):
> Carlings are pieces of timber laid fore and aft under the deck of a ship, from one beam to another.
> They serve as a foundation for the whole body of the ship.
Useful transforms for supporting our apache beam pipelines.
## Mapping transform utils
#### `carling.Label`
Labels all elements.
#### `carling.Select`
Removes all columns which are not specified in `*keys`.
#### `carling.Project`
Transforms each element into a tuple of values of the specified columns.
#### `carling.IndexBy`
Transforms each element `V` into a tuple `(K, V)`.
`K` is the projection of `V` by `*keys`, which is equal to the tuple
produced by the `Project` transform.
#### `carling.Stringify`
Transforms each element into its JSON representation.
#### `carling.IndexBySingle`
Transforms each element `V` into a tuple `(K, V)`.
The difference between `IndexBySingle(key)` and `IndexBy(key)` with a single
key is as follows:
- `IndexBySingle` produces the index as a plain value.
- `IndexBy` produces the index as a single-element tuple.
#### `carling.RenameFromTo`
Rename columns according to `from_to_key_mapping`.
#### `carling.Exclude`
Removes all columns specified in `*keys`.
## Grouping transform utils
Generic grouping transform utils
#### `carling.UniqueOnly`
Produces elements that are the only elements per key after deduplication.
Given a `PCollection` of `(K, V)`,
this transform produces the collection of all `V`s that do not share
the same corresponding `K`s with any other elements after deduplicating
all equivalent `(K, V)` pairs.
This transform is equivalent to `SingletonOnly` with `apache_beam.Distinct`.
`[(1, "A"), (2, "B1"), (2, "B2"), (3, "C"), (3, "C"), (4, "A")]` will be
transformed into `["A", "C", "A"]`.
#### `carling.SingletonOnly`
Produces elements that are the only elements per key.
Given a `PCollection` of `(K, V)`,
this transform produces the collection of all `V`s that do not share
the same corresponding `K`s with any other elements.
`[(1, "A"), (2, "B1"), (2, "B2"), (3, "C"), (3, "C"), (4, "A")]` will be
transformed into `["A", "A"]`.
#### `carling.Intersection`
Produces the intersection of given `PCollection`s.
Given a list of `PCollection`s,
this transform produces every element that appears in all collections of
the list.
Elements are deduplicated before taking the intersection.
#### `carling.FilterByKey`
Filters elements by their keys.
The constructor receives one or more `PCollection`s of `K`s,
which are regarded as key lists.
Given a `PCollection` of `(K, V)`,
this transform discards all elements with `K`s that do not appear
in the key lists.
If multiple collections are given to the constructor,
this transform treats the intersection of them as the key list.
#### `carling.FilterByKeyUsingSideInput`
Filters a single collection by a single lookup collection, using a common key.
Given: - a `PCollection` (lookup_entries) of `(V)`, as a lookup collection - a `PCollection` (pcoll) of `(V)`, as values to be filtered - a common key (filter_key)
A dictionary called `filter_dict` - is created by mapping the value of `filter_key`
for each entry in `lookup_entries` to True.
Then, for each item in pcoll, the value associated with `filter_key` checkd against
`filter_dict`, and if it is found, the entry passes through. Otherwise, the entry is
discarded.
Note: `lookup_entries` will be used as a **side input**, so care
must be taken regarding the size of the `lookup_entries`
#### `carling.DifferencePerKey`
Produces the difference per key between two `PCollection`s.
Given two `PCollection`s of `V`,
this transform indexes the collections by the specified keys `primary_keys`,
compares corresponding two `V` lists for every `K`,
and produces the difference per `K`.
If there is no difference, this transform produces nothing.
Two `V` lists are considered to be different if the numbers of elements
differ or two elements of the lists with a same index differ
at one of the specified columns `columns`.
#### `carling.SortedSelectPerKey`
- Groups items by a set of `keys` -- column names per row
- Emits the "MAX" _value_ for each collection as defined by the `key_fn`
- Can emit "MIN" by passing `reverse=True` kwarg
#### `carling.PartitionRowsContainingNone`
Emits two tagged PCollections:
- Default (`result[None]`): Rows are guaranteed not to have any `None` values
- `result["contains_none"]`: Rows for which at least one column had a `None` value
## Categorical
#### `carling.CreateCategoricalDicts`
For a set of columnular data inputs this function takes:
- cat_cols:
Type: `[str]`
An array of "categorical" columns
- existing_dicts:
Type: `PCollection[(string, string, int)]`
Rows of tuples of type:
(column, previously_seen_value, mapped_unique_int)
Mapping a set of "previously seen" keys to unique int values for each
column.
Not optional.
If none exist, pass an empty PCollection.
It then creates a transform which takes a pcollection and
- looks at the input pcoll for unseen values in each categorical column
- creates new unique integers for each distinct unseen value, starting at max(previous value for column)+1
- ammends the existing mappings with (col, unseen_value, new_unique_int)
Output is:
- Type: `PCollection[(string, string, int)]`
This is useful for preparing data to be trained by eg. LightGBM
#### `carling.ReplaceCategoricalColumns`
- Utilizes the "categorical dictionary rows" generated by `CreateCategoricalDicts` which is a list of pairs of type of `(column, value,unique_int)`.
- Replaces each column with the appropriate value found in the mapping.
## Test Utils
#### `carling.test_utils.pprint_equal_to`
This module contains the `equal_to` function from apache beam, but adapted to output results using pretty print. Reading the results as a large, unformatted string makes it harder to pick out what changed/is missing.
## General Util
#### `carling.LogSample`
Print items of the given `PCollection` to the log.
`LogSample` prints the JSON representations of the input items to the Python's
standard logging system.
To avoid too much log entries being printed, `LogSample` limits the number of
logged items. The constructor parameter `n` determines the limit.
By default, `LogSample` prints logs with the `INFO` log level. The constructor
parameter `level` determines the level.
#### `carling.ReifyMultiValueOption`
Prepares multi-value delimited options. Useful in contexts where
you want to create a multi-value option in a template environment.
- inputs:
- delimited string option
- optional delimiter string (default is "|")
* output:
- Type: `PCollection[str]`
%prep
%autosetup -n carling-0.3.5
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-carling -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.3.5-1
- Package Spec generated
|