summaryrefslogtreecommitdiff
path: root/python-catlearn.spec
blob: 7cd564403e727762afa7224c6e079afda2e471f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
%global _empty_manifest_terminate_build 0
Name:		python-CatLearn
Version:	0.6.2
Release:	1
Summary:	Machine Learning using atomic-scale calculations.
License:	GPL-3.0
URL:		https://github.com/SUNCAT-Center/CatLearn
Source0:	https://mirrors.aliyun.com/pypi/web/packages/95/55/3e5590c4538afa710272a008eb31d6b925188553aadcb1e0bd6dca01aafa/CatLearn-0.6.2.tar.gz
BuildArch:	noarch


%description
# CatLearn

> An environment for atomistic machine learning in Python for applications in catalysis.

[![DOI](https://zenodo.org/badge/130307939.svg)](https://zenodo.org/badge/latestdoi/130307939) [![Build Status](https://travis-ci.org/SUNCAT-Center/CatLearn.svg?branch=master)](https://travis-ci.org/SUNCAT-Center/CatLearn) [![Coverage Status](https://coveralls.io/repos/github/SUNCAT-Center/CatLearn/badge.svg?branch=master)](https://coveralls.io/github/SUNCAT-Center/CatLearn?branch=master) [![Documentation Status](https://readthedocs.org/projects/catlearn/badge/?version=latest)](http://catlearn.readthedocs.io/en/latest/?badge=latest) [![PyPI version](https://badge.fury.io/py/CatLearn.svg)](https://badge.fury.io/py/CatLearn) [![License: GPL v3](https://img.shields.io/badge/License-GPL%20v3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0)

Utilities for building and testing atomic machine learning models. Gaussian Processes (GP) regression machine learning routines are implemented. These will take any numpy array of training and test feature matrices along with a vector of target values.

In general, any data prepared in this fashion can be fed to the GP routines, a number of additional functions have been added that interface with [ASE](https://wiki.fysik.dtu.dk/ase/). This integration allows for the manipulation of atoms objects through GP predictions, as well as dynamic generation of descriptors through use of the many ASE functions.

CatLearn also includes the [MLNEB](https://github.com/SUNCAT-Center/CatLearn/tree/master/tutorials/11_NEB) algorithm for efficient transition state search, and the [MLMIN](https://github.com/SUNCAT-Center/CatLearn/tree/master/tutorials/12_MLMin) algorithm for efficient atomic structure optimization.

Please see the [tutorials](https://github.com/SUNCAT-Center/CatLearn/tree/master/tutorials) for a detailed overview of what the code can do and the conventions used in setting up the predictive models. For an overview of all the functionality available, please read the [documentation](http://catlearn.readthedocs.io/en/latest/).

## Table of contents

-   [Installation](#installation)
-   [Tutorials](#tutorials)
-   [Usage](#usage)
-   [Functionality](#functionality)
-   [How to cite](#how-to-cite-catlearn)
-   [Contribution](#contribution)

## Installation

[(Back to top)](#table-of-contents)

The easiest way to install the code is with:

```shell
$ pip install catlearn
```

This will automatically install the code as well as the dependencies. 

### Installation without dependencies

[(Back to top)](#table-of-contents)

If you want to install catlearn without dependencies, you can do:

```shell
$ pip install catlearn --no-deps
```

MLMIN and MLNEB will not need anything apart from ASE 3.17.0 or newer to run, but there are other parts of the code, which need the dependencies listed in [requirements.txt](https://github.com/SUNCAT-Center/CatLearn/blob/master/requirements.txt)

### Developer installation

```shell
$ git clone https://github.com/SUNCAT-Center/CatLearn.git
```

And then put the `<install_dir>/` into your `$PYTHONPATH` environment variable.

You can install dependencies in with:

```shell
$ pip install -r requirements.txt
```

### Docker

To use the docker image, it is necessary to have [docker](https://www.docker.com) installed and running. After cloning the project, build and run the image as follows:

```shell
$ docker build -t catlearn .
```

Then it is possible to use the image in two ways. It is possible to run the docker image as a bash environment in which CatLearn can be used will all dependencies in place.

```shell
$ docker run -it catlearn bash
```

Or python can be run from the docker image.

```shell
$ docker run -it catlearn python2 [file.py]
$ docker run -it catlearn python3 [file.py]
```

Use Ctrl + d to exit the docker image when done.

### Optional Dependencies

The tutorial scripts will generally output some graphical representations of the results etc. For these scripts, it is advisable to have at least `matplotlib` installed:

```shell
$ pip install matplotlib seaborn
```

## Tutorials

[(Back to top)](#table-of-contents)

Helpful examples and test scripts are present in [tutorials](https://github.com/SUNCAT-Center/CatLearn/tree/master/tutorials).

## Usage

[(Back to top)](#table-of-contents)

Set up CatLearn's Gaussian Process model and make some predictions using the following lines of code:

```python
import numpy as np
from catlearn.regression import GaussianProcess

# Define some input data.
train_features = np.arange(200).reshape(50, 4)
target = np.random.random_sample((50,))
test_features = np.arange(100).reshape(25, 4)

# Setup the kernel.
kernel = [{'type': 'gaussian', 'width': 0.5}]

# Train the GP model.
gp = GaussianProcess(kernel_list=kernel, regularization=1e-3,
                     train_fp=train_features, train_target=target,
                     optimize_hyperparameters=True)

# Get the predictions.
prediction = gp.predict(test_fp=test_features)
```

## Functionality

[(Back to top)](#table-of-contents)

There is much functionality in CatLearn to assist in handling atom data and building optimal models. This includes:

-   API to other codes:
    -   [Atomic simulation environment](https://wiki.fysik.dtu.dk/ase/) API
    -   [Magpie](https://bitbucket.org/wolverton/magpie) API
    -   [NetworkX](https://networkx.github.io/) API
-   Fingerprint generators:
    -   Bulk systems
    -   Support/slab systems
    -   Discrete systems
-   Preprocessing routines:
    -   Data cleaning
    -   Feature elimination
    -   Feature engineering
    -   Feature extraction
    -   Feature scaling
-   Regression methods:
    -   Regularized ridge regression
    -   Gaussian processes regression
-   Cross-validation:
    -   K-fold cv
    -   Ensemble k-fold cv
-   Machine Learning Algorithms
    -   Machine Learning Nudged Elastic Band (ML-NEB) algorithm.
-   General utilities:
    -   K-means clustering
    -   Neighborlist generators
    -   Penalty functions
    -   SQLite db storage

## How to cite CatLearn

[(Back to top)](#table-of-contents)

If you find CatLearn useful in your research, please cite

    1) M. H. Hansen, J. A. Garrido Torres, P. C. Jennings, 
       Z. Wang, J. R. Boes, O. G. Mamun and T. Bligaard.
       An Atomistic Machine Learning Package for Surface Science and Catalysis.
       https://arxiv.org/abs/1904.00904

If you use CatLearn's ML-NEB module, please cite:

    2) J. A. Garrido Torres, M. H. Hansen, P. C. Jennings,
       J. R. Boes and T. Bligaard. Phys. Rev. Lett. 122, 156001.
       https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.156001

## Contribution

[(Back to top)](#table-of-contents)

Anyone is welcome to contribute to the project. Please see the contribution guide for help setting up a local copy of the code. There are some `TODO` items in the README files for the various modules that give suggestions on parts of the code that could be improved.

%package -n python3-CatLearn
Summary:	Machine Learning using atomic-scale calculations.
Provides:	python-CatLearn
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-CatLearn
# CatLearn

> An environment for atomistic machine learning in Python for applications in catalysis.

[![DOI](https://zenodo.org/badge/130307939.svg)](https://zenodo.org/badge/latestdoi/130307939) [![Build Status](https://travis-ci.org/SUNCAT-Center/CatLearn.svg?branch=master)](https://travis-ci.org/SUNCAT-Center/CatLearn) [![Coverage Status](https://coveralls.io/repos/github/SUNCAT-Center/CatLearn/badge.svg?branch=master)](https://coveralls.io/github/SUNCAT-Center/CatLearn?branch=master) [![Documentation Status](https://readthedocs.org/projects/catlearn/badge/?version=latest)](http://catlearn.readthedocs.io/en/latest/?badge=latest) [![PyPI version](https://badge.fury.io/py/CatLearn.svg)](https://badge.fury.io/py/CatLearn) [![License: GPL v3](https://img.shields.io/badge/License-GPL%20v3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0)

Utilities for building and testing atomic machine learning models. Gaussian Processes (GP) regression machine learning routines are implemented. These will take any numpy array of training and test feature matrices along with a vector of target values.

In general, any data prepared in this fashion can be fed to the GP routines, a number of additional functions have been added that interface with [ASE](https://wiki.fysik.dtu.dk/ase/). This integration allows for the manipulation of atoms objects through GP predictions, as well as dynamic generation of descriptors through use of the many ASE functions.

CatLearn also includes the [MLNEB](https://github.com/SUNCAT-Center/CatLearn/tree/master/tutorials/11_NEB) algorithm for efficient transition state search, and the [MLMIN](https://github.com/SUNCAT-Center/CatLearn/tree/master/tutorials/12_MLMin) algorithm for efficient atomic structure optimization.

Please see the [tutorials](https://github.com/SUNCAT-Center/CatLearn/tree/master/tutorials) for a detailed overview of what the code can do and the conventions used in setting up the predictive models. For an overview of all the functionality available, please read the [documentation](http://catlearn.readthedocs.io/en/latest/).

## Table of contents

-   [Installation](#installation)
-   [Tutorials](#tutorials)
-   [Usage](#usage)
-   [Functionality](#functionality)
-   [How to cite](#how-to-cite-catlearn)
-   [Contribution](#contribution)

## Installation

[(Back to top)](#table-of-contents)

The easiest way to install the code is with:

```shell
$ pip install catlearn
```

This will automatically install the code as well as the dependencies. 

### Installation without dependencies

[(Back to top)](#table-of-contents)

If you want to install catlearn without dependencies, you can do:

```shell
$ pip install catlearn --no-deps
```

MLMIN and MLNEB will not need anything apart from ASE 3.17.0 or newer to run, but there are other parts of the code, which need the dependencies listed in [requirements.txt](https://github.com/SUNCAT-Center/CatLearn/blob/master/requirements.txt)

### Developer installation

```shell
$ git clone https://github.com/SUNCAT-Center/CatLearn.git
```

And then put the `<install_dir>/` into your `$PYTHONPATH` environment variable.

You can install dependencies in with:

```shell
$ pip install -r requirements.txt
```

### Docker

To use the docker image, it is necessary to have [docker](https://www.docker.com) installed and running. After cloning the project, build and run the image as follows:

```shell
$ docker build -t catlearn .
```

Then it is possible to use the image in two ways. It is possible to run the docker image as a bash environment in which CatLearn can be used will all dependencies in place.

```shell
$ docker run -it catlearn bash
```

Or python can be run from the docker image.

```shell
$ docker run -it catlearn python2 [file.py]
$ docker run -it catlearn python3 [file.py]
```

Use Ctrl + d to exit the docker image when done.

### Optional Dependencies

The tutorial scripts will generally output some graphical representations of the results etc. For these scripts, it is advisable to have at least `matplotlib` installed:

```shell
$ pip install matplotlib seaborn
```

## Tutorials

[(Back to top)](#table-of-contents)

Helpful examples and test scripts are present in [tutorials](https://github.com/SUNCAT-Center/CatLearn/tree/master/tutorials).

## Usage

[(Back to top)](#table-of-contents)

Set up CatLearn's Gaussian Process model and make some predictions using the following lines of code:

```python
import numpy as np
from catlearn.regression import GaussianProcess

# Define some input data.
train_features = np.arange(200).reshape(50, 4)
target = np.random.random_sample((50,))
test_features = np.arange(100).reshape(25, 4)

# Setup the kernel.
kernel = [{'type': 'gaussian', 'width': 0.5}]

# Train the GP model.
gp = GaussianProcess(kernel_list=kernel, regularization=1e-3,
                     train_fp=train_features, train_target=target,
                     optimize_hyperparameters=True)

# Get the predictions.
prediction = gp.predict(test_fp=test_features)
```

## Functionality

[(Back to top)](#table-of-contents)

There is much functionality in CatLearn to assist in handling atom data and building optimal models. This includes:

-   API to other codes:
    -   [Atomic simulation environment](https://wiki.fysik.dtu.dk/ase/) API
    -   [Magpie](https://bitbucket.org/wolverton/magpie) API
    -   [NetworkX](https://networkx.github.io/) API
-   Fingerprint generators:
    -   Bulk systems
    -   Support/slab systems
    -   Discrete systems
-   Preprocessing routines:
    -   Data cleaning
    -   Feature elimination
    -   Feature engineering
    -   Feature extraction
    -   Feature scaling
-   Regression methods:
    -   Regularized ridge regression
    -   Gaussian processes regression
-   Cross-validation:
    -   K-fold cv
    -   Ensemble k-fold cv
-   Machine Learning Algorithms
    -   Machine Learning Nudged Elastic Band (ML-NEB) algorithm.
-   General utilities:
    -   K-means clustering
    -   Neighborlist generators
    -   Penalty functions
    -   SQLite db storage

## How to cite CatLearn

[(Back to top)](#table-of-contents)

If you find CatLearn useful in your research, please cite

    1) M. H. Hansen, J. A. Garrido Torres, P. C. Jennings, 
       Z. Wang, J. R. Boes, O. G. Mamun and T. Bligaard.
       An Atomistic Machine Learning Package for Surface Science and Catalysis.
       https://arxiv.org/abs/1904.00904

If you use CatLearn's ML-NEB module, please cite:

    2) J. A. Garrido Torres, M. H. Hansen, P. C. Jennings,
       J. R. Boes and T. Bligaard. Phys. Rev. Lett. 122, 156001.
       https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.156001

## Contribution

[(Back to top)](#table-of-contents)

Anyone is welcome to contribute to the project. Please see the contribution guide for help setting up a local copy of the code. There are some `TODO` items in the README files for the various modules that give suggestions on parts of the code that could be improved.

%package help
Summary:	Development documents and examples for CatLearn
Provides:	python3-CatLearn-doc
%description help
# CatLearn

> An environment for atomistic machine learning in Python for applications in catalysis.

[![DOI](https://zenodo.org/badge/130307939.svg)](https://zenodo.org/badge/latestdoi/130307939) [![Build Status](https://travis-ci.org/SUNCAT-Center/CatLearn.svg?branch=master)](https://travis-ci.org/SUNCAT-Center/CatLearn) [![Coverage Status](https://coveralls.io/repos/github/SUNCAT-Center/CatLearn/badge.svg?branch=master)](https://coveralls.io/github/SUNCAT-Center/CatLearn?branch=master) [![Documentation Status](https://readthedocs.org/projects/catlearn/badge/?version=latest)](http://catlearn.readthedocs.io/en/latest/?badge=latest) [![PyPI version](https://badge.fury.io/py/CatLearn.svg)](https://badge.fury.io/py/CatLearn) [![License: GPL v3](https://img.shields.io/badge/License-GPL%20v3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0)

Utilities for building and testing atomic machine learning models. Gaussian Processes (GP) regression machine learning routines are implemented. These will take any numpy array of training and test feature matrices along with a vector of target values.

In general, any data prepared in this fashion can be fed to the GP routines, a number of additional functions have been added that interface with [ASE](https://wiki.fysik.dtu.dk/ase/). This integration allows for the manipulation of atoms objects through GP predictions, as well as dynamic generation of descriptors through use of the many ASE functions.

CatLearn also includes the [MLNEB](https://github.com/SUNCAT-Center/CatLearn/tree/master/tutorials/11_NEB) algorithm for efficient transition state search, and the [MLMIN](https://github.com/SUNCAT-Center/CatLearn/tree/master/tutorials/12_MLMin) algorithm for efficient atomic structure optimization.

Please see the [tutorials](https://github.com/SUNCAT-Center/CatLearn/tree/master/tutorials) for a detailed overview of what the code can do and the conventions used in setting up the predictive models. For an overview of all the functionality available, please read the [documentation](http://catlearn.readthedocs.io/en/latest/).

## Table of contents

-   [Installation](#installation)
-   [Tutorials](#tutorials)
-   [Usage](#usage)
-   [Functionality](#functionality)
-   [How to cite](#how-to-cite-catlearn)
-   [Contribution](#contribution)

## Installation

[(Back to top)](#table-of-contents)

The easiest way to install the code is with:

```shell
$ pip install catlearn
```

This will automatically install the code as well as the dependencies. 

### Installation without dependencies

[(Back to top)](#table-of-contents)

If you want to install catlearn without dependencies, you can do:

```shell
$ pip install catlearn --no-deps
```

MLMIN and MLNEB will not need anything apart from ASE 3.17.0 or newer to run, but there are other parts of the code, which need the dependencies listed in [requirements.txt](https://github.com/SUNCAT-Center/CatLearn/blob/master/requirements.txt)

### Developer installation

```shell
$ git clone https://github.com/SUNCAT-Center/CatLearn.git
```

And then put the `<install_dir>/` into your `$PYTHONPATH` environment variable.

You can install dependencies in with:

```shell
$ pip install -r requirements.txt
```

### Docker

To use the docker image, it is necessary to have [docker](https://www.docker.com) installed and running. After cloning the project, build and run the image as follows:

```shell
$ docker build -t catlearn .
```

Then it is possible to use the image in two ways. It is possible to run the docker image as a bash environment in which CatLearn can be used will all dependencies in place.

```shell
$ docker run -it catlearn bash
```

Or python can be run from the docker image.

```shell
$ docker run -it catlearn python2 [file.py]
$ docker run -it catlearn python3 [file.py]
```

Use Ctrl + d to exit the docker image when done.

### Optional Dependencies

The tutorial scripts will generally output some graphical representations of the results etc. For these scripts, it is advisable to have at least `matplotlib` installed:

```shell
$ pip install matplotlib seaborn
```

## Tutorials

[(Back to top)](#table-of-contents)

Helpful examples and test scripts are present in [tutorials](https://github.com/SUNCAT-Center/CatLearn/tree/master/tutorials).

## Usage

[(Back to top)](#table-of-contents)

Set up CatLearn's Gaussian Process model and make some predictions using the following lines of code:

```python
import numpy as np
from catlearn.regression import GaussianProcess

# Define some input data.
train_features = np.arange(200).reshape(50, 4)
target = np.random.random_sample((50,))
test_features = np.arange(100).reshape(25, 4)

# Setup the kernel.
kernel = [{'type': 'gaussian', 'width': 0.5}]

# Train the GP model.
gp = GaussianProcess(kernel_list=kernel, regularization=1e-3,
                     train_fp=train_features, train_target=target,
                     optimize_hyperparameters=True)

# Get the predictions.
prediction = gp.predict(test_fp=test_features)
```

## Functionality

[(Back to top)](#table-of-contents)

There is much functionality in CatLearn to assist in handling atom data and building optimal models. This includes:

-   API to other codes:
    -   [Atomic simulation environment](https://wiki.fysik.dtu.dk/ase/) API
    -   [Magpie](https://bitbucket.org/wolverton/magpie) API
    -   [NetworkX](https://networkx.github.io/) API
-   Fingerprint generators:
    -   Bulk systems
    -   Support/slab systems
    -   Discrete systems
-   Preprocessing routines:
    -   Data cleaning
    -   Feature elimination
    -   Feature engineering
    -   Feature extraction
    -   Feature scaling
-   Regression methods:
    -   Regularized ridge regression
    -   Gaussian processes regression
-   Cross-validation:
    -   K-fold cv
    -   Ensemble k-fold cv
-   Machine Learning Algorithms
    -   Machine Learning Nudged Elastic Band (ML-NEB) algorithm.
-   General utilities:
    -   K-means clustering
    -   Neighborlist generators
    -   Penalty functions
    -   SQLite db storage

## How to cite CatLearn

[(Back to top)](#table-of-contents)

If you find CatLearn useful in your research, please cite

    1) M. H. Hansen, J. A. Garrido Torres, P. C. Jennings, 
       Z. Wang, J. R. Boes, O. G. Mamun and T. Bligaard.
       An Atomistic Machine Learning Package for Surface Science and Catalysis.
       https://arxiv.org/abs/1904.00904

If you use CatLearn's ML-NEB module, please cite:

    2) J. A. Garrido Torres, M. H. Hansen, P. C. Jennings,
       J. R. Boes and T. Bligaard. Phys. Rev. Lett. 122, 156001.
       https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.156001

## Contribution

[(Back to top)](#table-of-contents)

Anyone is welcome to contribute to the project. Please see the contribution guide for help setting up a local copy of the code. There are some `TODO` items in the README files for the various modules that give suggestions on parts of the code that could be improved.

%prep
%autosetup -n CatLearn-0.6.2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-CatLearn -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 0.6.2-1
- Package Spec generated