1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
|
%global _empty_manifest_terminate_build 0
Name: python-causalml
Version: 0.13.0
Release: 1
Summary: Python Package for Uplift Modeling and Causal Inference with Machine Learning Algorithms
License: Apache Software License
URL: https://github.com/uber/causalml
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/59/e5/1e4958c2e1b335c1ff87fdac03c90a81776e4bd5030e24a0a6db7cf02edd/causalml-0.13.0.tar.gz
BuildArch: noarch
Requires: python3-setuptools
Requires: python3-forestci
Requires: python3-pathos
Requires: python3-pip
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-matplotlib
Requires: python3-pandas
Requires: python3-scikit-learn
Requires: python3-statsmodels
Requires: python3-seaborn
Requires: python3-Cython
Requires: python3-xgboost
Requires: python3-pydotplus
Requires: python3-tqdm
Requires: python3-shap
Requires: python3-dill
Requires: python3-lightgbm
Requires: python3-pygam
Requires: python3-packaging
Requires: python3-torch
Requires: python3-pyro-ppl
Requires: python3-graphviz
Requires: python3-tensorflow
%description
[](https://pypi.org/project/causalml/)
[](https://github.com/uber/causalml/actions/workflows/python-test.yaml)
[](http://causalml.readthedocs.io/en/latest/?badge=latest)
[](https://pepy.tech/project/causalml)
[](https://bestpractices.coreinfrastructure.org/projects/3015)
# Disclaimer
This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to change.
# Causal ML: A Python Package for Uplift Modeling and Causal Inference with ML
**Causal ML** is a Python package that provides a suite of uplift modeling and causal inference methods using machine learning algorithms based on recent
research [[1]](#Literature). It provides a standard interface that allows user to estimate the Conditional Average Treatment Effect (CATE) or Individual Treatment
Effect (ITE) from experimental or observational data. Essentially, it estimates the causal impact of intervention `T` on outcome `Y` for users
with observed features `X`, without strong assumptions on the model form. Typical use cases include
* **Campaign targeting optimization**: An important lever to increase ROI in an advertising campaign is to target the ad to the set of customers who will have a favorable response in a given KPI such as engagement or sales. CATE identifies these customers by estimating the effect of the KPI from ad exposure at the individual level from A/B experiment or historical observational data.
* **Personalized engagement**: A company has multiple options to interact with its customers such as different product choices in up-sell or messaging channels for communications. One can use CATE to estimate the heterogeneous treatment effect for each customer and treatment option combination for an optimal personalized recommendation system.
The package currently supports the following methods
* **Tree-based algorithms**
* Uplift tree/random forests on KL divergence, Euclidean Distance, and Chi-Square [[2]](#Literature)
* Uplift tree/random forests on Contextual Treatment Selection [[3]](#Literature)
* Causal Tree [[4]](#Literature) - Work-in-progress
* **Meta-learner algorithms**
* S-learner [[5]](#Literature)
* T-learner [[5]](#Literature)
* X-learner [[5]](#Literature)
* R-learner [[6]](#Literature)
* Doubly Robust (DR) learner [[7]](#Literature)
* TMLE learner [[8]](#Literature)
* **Instrumental variables algorithms**
* 2-Stage Least Squares (2SLS)
* Doubly Robust (DR) IV [[9]](#Literature)
* **Neural-network-based algorithms**
* CEVAE [[10]](#Literature)
* DragonNet [[11]](#Literature) - with `causalml[tf]` installation (see [Installation](#installation))
# Installation
Installation with `conda` is recommended. `conda` environment files for Python 3.6, 3.7, 3.8 and 3.9 are available in the repository. To use models under the `inference.tf` module (e.g. `DragonNet`), additional dependency of `tensorflow` is required. For detailed instructions, see below.
## Install using `conda`:
### Install from `conda-forge`
Directly install from the conda-forge channel using conda.
```sh
$ conda install -c conda-forge causalml
```
### Install with the `conda` virtual environment
This will create a new `conda` virtual environment named `causalml-[tf-]py3x`, where `x` is in `[6, 7, 8, 9]`. e.g. `causalml-py37` or `causalml-tf-py38`. If you want to change the name of the environment, update the relevant YAML file in `envs/`
```
$ git clone https://github.com/uber/causalml.git
$ cd causalml/envs/
$ conda env create -f environment-py38.yml # for the virtual environment with Python 3.8 and CausalML
$ conda activate causalml-py38
(causalml-py38)
```
### Install `causalml` with `tensorflow`
```
$ git clone https://github.com/uber/causalml.git
$ cd causalml/envs/
$ conda env create -f environment-tf-py38.yml # for the virtual environment with Python 3.8 and CausalML
$ conda activate causalml-tf-py38
(causalml-tf-py38) pip install -U numpy # this step is necessary to fix [#338](https://github.com/uber/causalml/issues/338)
```
## Install using `pip`:
```
$ git clone https://github.com/uber/causalml.git
$ cd causalml
$ pip install -r requirements.txt
$ pip install causalml
```
### Install `causalml` with `tensorflow`
```
$ git clone https://github.com/uber/causalml.git
$ cd causalml
$ pip install -r requirements-tf.txt
$ pip install causalml[tf]
$ pip install -U numpy # this step is necessary to fix [#338](https://github.com/uber/causalml/issues/338)
```
## Install from source:
```
$ git clone https://github.com/uber/causalml.git
$ cd causalml
$ pip install -r requirements.txt
$ python setup.py build_ext --inplace
$ python setup.py install
```
# Quick Start
## Average Treatment Effect Estimation with S, T, X, and R Learners
```python
from causalml.inference.meta import LRSRegressor
from causalml.inference.meta import XGBTRegressor, MLPTRegressor
from causalml.inference.meta import BaseXRegressor
from causalml.inference.meta import BaseRRegressor
from xgboost import XGBRegressor
from causalml.dataset import synthetic_data
y, X, treatment, _, _, e = synthetic_data(mode=1, n=1000, p=5, sigma=1.0)
lr = LRSRegressor()
te, lb, ub = lr.estimate_ate(X, treatment, y)
print('Average Treatment Effect (Linear Regression): {:.2f} ({:.2f}, {:.2f})'.format(te[0], lb[0], ub[0]))
xg = XGBTRegressor(random_state=42)
te, lb, ub = xg.estimate_ate(X, treatment, y)
print('Average Treatment Effect (XGBoost): {:.2f} ({:.2f}, {:.2f})'.format(te[0], lb[0], ub[0]))
nn = MLPTRegressor(hidden_layer_sizes=(10, 10),
learning_rate_init=.1,
early_stopping=True,
random_state=42)
te, lb, ub = nn.estimate_ate(X, treatment, y)
print('Average Treatment Effect (Neural Network (MLP)): {:.2f} ({:.2f}, {:.2f})'.format(te[0], lb[0], ub[0]))
xl = BaseXRegressor(learner=XGBRegressor(random_state=42))
te, lb, ub = xl.estimate_ate(X, treatment, y, e)
print('Average Treatment Effect (BaseXRegressor using XGBoost): {:.2f} ({:.2f}, {:.2f})'.format(te[0], lb[0], ub[0]))
rl = BaseRRegressor(learner=XGBRegressor(random_state=42))
te, lb, ub = rl.estimate_ate(X=X, p=e, treatment=treatment, y=y)
print('Average Treatment Effect (BaseRRegressor using XGBoost): {:.2f} ({:.2f}, {:.2f})'.format(te[0], lb[0], ub[0]))
```
See the [Meta-learner example notebook](https://github.com/uber/causalml/blob/master/examples/meta_learners_with_synthetic_data.ipynb) for details.
## Interpretable Causal ML
Causal ML provides methods to interpret the treatment effect models trained as follows:
### Meta Learner Feature Importances
```python
from causalml.inference.meta import BaseSRegressor, BaseTRegressor, BaseXRegressor, BaseRRegressor
from causalml.dataset.regression import synthetic_data
# Load synthetic data
y, X, treatment, tau, b, e = synthetic_data(mode=1, n=10000, p=25, sigma=0.5)
w_multi = np.array(['treatment_A' if x==1 else 'control' for x in treatment]) # customize treatment/control names
slearner = BaseSRegressor(LGBMRegressor(), control_name='control')
slearner.estimate_ate(X, w_multi, y)
slearner_tau = slearner.fit_predict(X, w_multi, y)
model_tau_feature = RandomForestRegressor() # specify model for model_tau_feature
slearner.get_importance(X=X, tau=slearner_tau, model_tau_feature=model_tau_feature,
normalize=True, method='auto', features=feature_names)
# Using the feature_importances_ method in the base learner (LGBMRegressor() in this example)
slearner.plot_importance(X=X, tau=slearner_tau, normalize=True, method='auto')
# Using eli5's PermutationImportance
slearner.plot_importance(X=X, tau=slearner_tau, normalize=True, method='permutation')
# Using SHAP
shap_slearner = slearner.get_shap_values(X=X, tau=slearner_tau)
# Plot shap values without specifying shap_dict
slearner.plot_shap_values(X=X, tau=slearner_tau)
# Plot shap values WITH specifying shap_dict
slearner.plot_shap_values(X=X, shap_dict=shap_slearner)
# interaction_idx set to 'auto' (searches for feature with greatest approximate interaction)
slearner.plot_shap_dependence(treatment_group='treatment_A',
feature_idx=1,
X=X,
tau=slearner_tau,
interaction_idx='auto')
```
<div align="center">
<img width="629px" height="618px" src="https://raw.githubusercontent.com/uber/causalml/master/docs/_static/img/shap_vis.png">
</div>
See the [feature interpretations example notebook](https://github.com/uber/causalml/blob/master/examples/feature_interpretations_example.ipynb) for details.
### Uplift Tree Visualization
```python
from IPython.display import Image
from causalml.inference.tree import UpliftTreeClassifier, UpliftRandomForestClassifier
from causalml.inference.tree import uplift_tree_string, uplift_tree_plot
uplift_model = UpliftTreeClassifier(max_depth=5, min_samples_leaf=200, min_samples_treatment=50,
n_reg=100, evaluationFunction='KL', control_name='control')
uplift_model.fit(df[features].values,
treatment=df['treatment_group_key'].values,
y=df['conversion'].values)
graph = uplift_tree_plot(uplift_model.fitted_uplift_tree, features)
Image(graph.create_png())
```
<div align="center">
<img width="800px" height="479px" src="https://raw.githubusercontent.com/uber/causalml/master/docs/_static/img/uplift_tree_vis.png">
</div>
See the [Uplift Tree visualization example notebook](https://github.com/uber/causalml/blob/master/examples/uplift_tree_visualization.ipynb) for details.
# Contributing
We welcome community contributors to the project. Before you start, please read our [code of conduct](https://github.com/uber/causalml/blob/master/CODE_OF_CONDUCT.md) and check out [contributing guidelines](./CONTRIBUTING.md) first.
# Versioning
We document versions and changes in our [changelog](https://github.com/uber/causalml/blob/master/docs/changelog.rst).
# License
This project is licensed under the Apache 2.0 License - see the [LICENSE](https://github.com/uber/causalml/blob/master/LICENSE) file for details.
# References
## Documentation
* [Causal ML API documentation](https://causalml.readthedocs.io/en/latest/about.html)
## Conference Talks and Publications by CausalML Team
* (Talk) Introduction to CausalML at [Causal Data Science Meeting 2021](https://www.causalscience.org/meeting/program/day-2/)
* (Talk) Introduction to CausalML at [2021 Conference on Digital Experimentation @ MIT (CODE@MIT)](https://ide.mit.edu/events/2021-conference-on-digital-experimentation-mit-codemit/)
* (Talk) Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber at [KDD 2021 Tutorials](https://kdd.org/kdd2021/tutorials) ([website and slide links](https://causal-machine-learning.github.io/kdd2021-tutorial/))
* (Publication) CausalML White Paper [Causalml: Python package for causal machine learning](https://arxiv.org/abs/2002.11631)
* (Publication) [Uplift Modeling for Multiple Treatments with Cost Optimization](https://ieeexplore.ieee.org/document/8964199) at [2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA)](http://203.170.84.89/~idawis33/dsaa2019/preliminary-program/)
* (Publication) [Feature Selection Methods for Uplift Modeling](https://arxiv.org/abs/2005.03447)
## Citation
To cite CausalML in publications, you can refer to the following sources:
Whitepaper:
[CausalML: Python Package for Causal Machine Learning](https://arxiv.org/abs/2002.11631)
Bibtex:
> @misc{chen2020causalml,
> title={CausalML: Python Package for Causal Machine Learning},
> author={Huigang Chen and Totte Harinen and Jeong-Yoon Lee and Mike Yung and Zhenyu Zhao},
> year={2020},
> eprint={2002.11631},
> archivePrefix={arXiv},
> primaryClass={cs.CY}
>}
## Literature
1. Chen, Huigang, Totte Harinen, Jeong-Yoon Lee, Mike Yung, and Zhenyu Zhao. "Causalml: Python package for causal machine learning." arXiv preprint arXiv:2002.11631 (2020).
2. Radcliffe, Nicholas J., and Patrick D. Surry. "Real-world uplift modelling with significance-based uplift trees." White Paper TR-2011-1, Stochastic Solutions (2011): 1-33.
3. Zhao, Yan, Xiao Fang, and David Simchi-Levi. "Uplift modeling with multiple treatments and general response types." Proceedings of the 2017 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2017.
4. Athey, Susan, and Guido Imbens. "Recursive partitioning for heterogeneous causal effects." Proceedings of the National Academy of Sciences 113.27 (2016): 7353-7360.
5. Künzel, Sören R., et al. "Metalearners for estimating heterogeneous treatment effects using machine learning." Proceedings of the national academy of sciences 116.10 (2019): 4156-4165.
6. Nie, Xinkun, and Stefan Wager. "Quasi-oracle estimation of heterogeneous treatment effects." arXiv preprint arXiv:1712.04912 (2017).
7. Bang, Heejung, and James M. Robins. "Doubly robust estimation in missing data and causal inference models." Biometrics 61.4 (2005): 962-973.
8. Van Der Laan, Mark J., and Daniel Rubin. "Targeted maximum likelihood learning." The international journal of biostatistics 2.1 (2006).
9. Kennedy, Edward H. "Optimal doubly robust estimation of heterogeneous causal effects." arXiv preprint arXiv:2004.14497 (2020).
10. Louizos, Christos, et al. "Causal effect inference with deep latent-variable models." arXiv preprint arXiv:1705.08821 (2017).
11. Shi, Claudia, David M. Blei, and Victor Veitch. "Adapting neural networks for the estimation of treatment effects." 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), 2019.
12. Zhao, Zhenyu, Yumin Zhang, Totte Harinen, and Mike Yung. "Feature Selection Methods for Uplift Modeling." arXiv preprint arXiv:2005.03447 (2020).
13. Zhao, Zhenyu, and Totte Harinen. "Uplift modeling for multiple treatments with cost optimization." In 2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 422-431. IEEE, 2019.
## Related projects
* [uplift](https://cran.r-project.org/web/packages/uplift/index.html): uplift models in R
* [grf](https://cran.r-project.org/web/packages/grf/index.html): generalized random forests that include heterogeneous treatment effect estimation in R
* [rlearner](https://github.com/xnie/rlearner): A R package that implements R-Learner
* [DoWhy](https://github.com/Microsoft/dowhy): Causal inference in Python based on Judea Pearl's do-calculus
* [EconML](https://github.com/microsoft/EconML): A Python package that implements heterogeneous treatment effect estimators from econometrics and machine learning methods
%package -n python3-causalml
Summary: Python Package for Uplift Modeling and Causal Inference with Machine Learning Algorithms
Provides: python-causalml
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-causalml
[](https://pypi.org/project/causalml/)
[](https://github.com/uber/causalml/actions/workflows/python-test.yaml)
[](http://causalml.readthedocs.io/en/latest/?badge=latest)
[](https://pepy.tech/project/causalml)
[](https://bestpractices.coreinfrastructure.org/projects/3015)
# Disclaimer
This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to change.
# Causal ML: A Python Package for Uplift Modeling and Causal Inference with ML
**Causal ML** is a Python package that provides a suite of uplift modeling and causal inference methods using machine learning algorithms based on recent
research [[1]](#Literature). It provides a standard interface that allows user to estimate the Conditional Average Treatment Effect (CATE) or Individual Treatment
Effect (ITE) from experimental or observational data. Essentially, it estimates the causal impact of intervention `T` on outcome `Y` for users
with observed features `X`, without strong assumptions on the model form. Typical use cases include
* **Campaign targeting optimization**: An important lever to increase ROI in an advertising campaign is to target the ad to the set of customers who will have a favorable response in a given KPI such as engagement or sales. CATE identifies these customers by estimating the effect of the KPI from ad exposure at the individual level from A/B experiment or historical observational data.
* **Personalized engagement**: A company has multiple options to interact with its customers such as different product choices in up-sell or messaging channels for communications. One can use CATE to estimate the heterogeneous treatment effect for each customer and treatment option combination for an optimal personalized recommendation system.
The package currently supports the following methods
* **Tree-based algorithms**
* Uplift tree/random forests on KL divergence, Euclidean Distance, and Chi-Square [[2]](#Literature)
* Uplift tree/random forests on Contextual Treatment Selection [[3]](#Literature)
* Causal Tree [[4]](#Literature) - Work-in-progress
* **Meta-learner algorithms**
* S-learner [[5]](#Literature)
* T-learner [[5]](#Literature)
* X-learner [[5]](#Literature)
* R-learner [[6]](#Literature)
* Doubly Robust (DR) learner [[7]](#Literature)
* TMLE learner [[8]](#Literature)
* **Instrumental variables algorithms**
* 2-Stage Least Squares (2SLS)
* Doubly Robust (DR) IV [[9]](#Literature)
* **Neural-network-based algorithms**
* CEVAE [[10]](#Literature)
* DragonNet [[11]](#Literature) - with `causalml[tf]` installation (see [Installation](#installation))
# Installation
Installation with `conda` is recommended. `conda` environment files for Python 3.6, 3.7, 3.8 and 3.9 are available in the repository. To use models under the `inference.tf` module (e.g. `DragonNet`), additional dependency of `tensorflow` is required. For detailed instructions, see below.
## Install using `conda`:
### Install from `conda-forge`
Directly install from the conda-forge channel using conda.
```sh
$ conda install -c conda-forge causalml
```
### Install with the `conda` virtual environment
This will create a new `conda` virtual environment named `causalml-[tf-]py3x`, where `x` is in `[6, 7, 8, 9]`. e.g. `causalml-py37` or `causalml-tf-py38`. If you want to change the name of the environment, update the relevant YAML file in `envs/`
```
$ git clone https://github.com/uber/causalml.git
$ cd causalml/envs/
$ conda env create -f environment-py38.yml # for the virtual environment with Python 3.8 and CausalML
$ conda activate causalml-py38
(causalml-py38)
```
### Install `causalml` with `tensorflow`
```
$ git clone https://github.com/uber/causalml.git
$ cd causalml/envs/
$ conda env create -f environment-tf-py38.yml # for the virtual environment with Python 3.8 and CausalML
$ conda activate causalml-tf-py38
(causalml-tf-py38) pip install -U numpy # this step is necessary to fix [#338](https://github.com/uber/causalml/issues/338)
```
## Install using `pip`:
```
$ git clone https://github.com/uber/causalml.git
$ cd causalml
$ pip install -r requirements.txt
$ pip install causalml
```
### Install `causalml` with `tensorflow`
```
$ git clone https://github.com/uber/causalml.git
$ cd causalml
$ pip install -r requirements-tf.txt
$ pip install causalml[tf]
$ pip install -U numpy # this step is necessary to fix [#338](https://github.com/uber/causalml/issues/338)
```
## Install from source:
```
$ git clone https://github.com/uber/causalml.git
$ cd causalml
$ pip install -r requirements.txt
$ python setup.py build_ext --inplace
$ python setup.py install
```
# Quick Start
## Average Treatment Effect Estimation with S, T, X, and R Learners
```python
from causalml.inference.meta import LRSRegressor
from causalml.inference.meta import XGBTRegressor, MLPTRegressor
from causalml.inference.meta import BaseXRegressor
from causalml.inference.meta import BaseRRegressor
from xgboost import XGBRegressor
from causalml.dataset import synthetic_data
y, X, treatment, _, _, e = synthetic_data(mode=1, n=1000, p=5, sigma=1.0)
lr = LRSRegressor()
te, lb, ub = lr.estimate_ate(X, treatment, y)
print('Average Treatment Effect (Linear Regression): {:.2f} ({:.2f}, {:.2f})'.format(te[0], lb[0], ub[0]))
xg = XGBTRegressor(random_state=42)
te, lb, ub = xg.estimate_ate(X, treatment, y)
print('Average Treatment Effect (XGBoost): {:.2f} ({:.2f}, {:.2f})'.format(te[0], lb[0], ub[0]))
nn = MLPTRegressor(hidden_layer_sizes=(10, 10),
learning_rate_init=.1,
early_stopping=True,
random_state=42)
te, lb, ub = nn.estimate_ate(X, treatment, y)
print('Average Treatment Effect (Neural Network (MLP)): {:.2f} ({:.2f}, {:.2f})'.format(te[0], lb[0], ub[0]))
xl = BaseXRegressor(learner=XGBRegressor(random_state=42))
te, lb, ub = xl.estimate_ate(X, treatment, y, e)
print('Average Treatment Effect (BaseXRegressor using XGBoost): {:.2f} ({:.2f}, {:.2f})'.format(te[0], lb[0], ub[0]))
rl = BaseRRegressor(learner=XGBRegressor(random_state=42))
te, lb, ub = rl.estimate_ate(X=X, p=e, treatment=treatment, y=y)
print('Average Treatment Effect (BaseRRegressor using XGBoost): {:.2f} ({:.2f}, {:.2f})'.format(te[0], lb[0], ub[0]))
```
See the [Meta-learner example notebook](https://github.com/uber/causalml/blob/master/examples/meta_learners_with_synthetic_data.ipynb) for details.
## Interpretable Causal ML
Causal ML provides methods to interpret the treatment effect models trained as follows:
### Meta Learner Feature Importances
```python
from causalml.inference.meta import BaseSRegressor, BaseTRegressor, BaseXRegressor, BaseRRegressor
from causalml.dataset.regression import synthetic_data
# Load synthetic data
y, X, treatment, tau, b, e = synthetic_data(mode=1, n=10000, p=25, sigma=0.5)
w_multi = np.array(['treatment_A' if x==1 else 'control' for x in treatment]) # customize treatment/control names
slearner = BaseSRegressor(LGBMRegressor(), control_name='control')
slearner.estimate_ate(X, w_multi, y)
slearner_tau = slearner.fit_predict(X, w_multi, y)
model_tau_feature = RandomForestRegressor() # specify model for model_tau_feature
slearner.get_importance(X=X, tau=slearner_tau, model_tau_feature=model_tau_feature,
normalize=True, method='auto', features=feature_names)
# Using the feature_importances_ method in the base learner (LGBMRegressor() in this example)
slearner.plot_importance(X=X, tau=slearner_tau, normalize=True, method='auto')
# Using eli5's PermutationImportance
slearner.plot_importance(X=X, tau=slearner_tau, normalize=True, method='permutation')
# Using SHAP
shap_slearner = slearner.get_shap_values(X=X, tau=slearner_tau)
# Plot shap values without specifying shap_dict
slearner.plot_shap_values(X=X, tau=slearner_tau)
# Plot shap values WITH specifying shap_dict
slearner.plot_shap_values(X=X, shap_dict=shap_slearner)
# interaction_idx set to 'auto' (searches for feature with greatest approximate interaction)
slearner.plot_shap_dependence(treatment_group='treatment_A',
feature_idx=1,
X=X,
tau=slearner_tau,
interaction_idx='auto')
```
<div align="center">
<img width="629px" height="618px" src="https://raw.githubusercontent.com/uber/causalml/master/docs/_static/img/shap_vis.png">
</div>
See the [feature interpretations example notebook](https://github.com/uber/causalml/blob/master/examples/feature_interpretations_example.ipynb) for details.
### Uplift Tree Visualization
```python
from IPython.display import Image
from causalml.inference.tree import UpliftTreeClassifier, UpliftRandomForestClassifier
from causalml.inference.tree import uplift_tree_string, uplift_tree_plot
uplift_model = UpliftTreeClassifier(max_depth=5, min_samples_leaf=200, min_samples_treatment=50,
n_reg=100, evaluationFunction='KL', control_name='control')
uplift_model.fit(df[features].values,
treatment=df['treatment_group_key'].values,
y=df['conversion'].values)
graph = uplift_tree_plot(uplift_model.fitted_uplift_tree, features)
Image(graph.create_png())
```
<div align="center">
<img width="800px" height="479px" src="https://raw.githubusercontent.com/uber/causalml/master/docs/_static/img/uplift_tree_vis.png">
</div>
See the [Uplift Tree visualization example notebook](https://github.com/uber/causalml/blob/master/examples/uplift_tree_visualization.ipynb) for details.
# Contributing
We welcome community contributors to the project. Before you start, please read our [code of conduct](https://github.com/uber/causalml/blob/master/CODE_OF_CONDUCT.md) and check out [contributing guidelines](./CONTRIBUTING.md) first.
# Versioning
We document versions and changes in our [changelog](https://github.com/uber/causalml/blob/master/docs/changelog.rst).
# License
This project is licensed under the Apache 2.0 License - see the [LICENSE](https://github.com/uber/causalml/blob/master/LICENSE) file for details.
# References
## Documentation
* [Causal ML API documentation](https://causalml.readthedocs.io/en/latest/about.html)
## Conference Talks and Publications by CausalML Team
* (Talk) Introduction to CausalML at [Causal Data Science Meeting 2021](https://www.causalscience.org/meeting/program/day-2/)
* (Talk) Introduction to CausalML at [2021 Conference on Digital Experimentation @ MIT (CODE@MIT)](https://ide.mit.edu/events/2021-conference-on-digital-experimentation-mit-codemit/)
* (Talk) Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber at [KDD 2021 Tutorials](https://kdd.org/kdd2021/tutorials) ([website and slide links](https://causal-machine-learning.github.io/kdd2021-tutorial/))
* (Publication) CausalML White Paper [Causalml: Python package for causal machine learning](https://arxiv.org/abs/2002.11631)
* (Publication) [Uplift Modeling for Multiple Treatments with Cost Optimization](https://ieeexplore.ieee.org/document/8964199) at [2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA)](http://203.170.84.89/~idawis33/dsaa2019/preliminary-program/)
* (Publication) [Feature Selection Methods for Uplift Modeling](https://arxiv.org/abs/2005.03447)
## Citation
To cite CausalML in publications, you can refer to the following sources:
Whitepaper:
[CausalML: Python Package for Causal Machine Learning](https://arxiv.org/abs/2002.11631)
Bibtex:
> @misc{chen2020causalml,
> title={CausalML: Python Package for Causal Machine Learning},
> author={Huigang Chen and Totte Harinen and Jeong-Yoon Lee and Mike Yung and Zhenyu Zhao},
> year={2020},
> eprint={2002.11631},
> archivePrefix={arXiv},
> primaryClass={cs.CY}
>}
## Literature
1. Chen, Huigang, Totte Harinen, Jeong-Yoon Lee, Mike Yung, and Zhenyu Zhao. "Causalml: Python package for causal machine learning." arXiv preprint arXiv:2002.11631 (2020).
2. Radcliffe, Nicholas J., and Patrick D. Surry. "Real-world uplift modelling with significance-based uplift trees." White Paper TR-2011-1, Stochastic Solutions (2011): 1-33.
3. Zhao, Yan, Xiao Fang, and David Simchi-Levi. "Uplift modeling with multiple treatments and general response types." Proceedings of the 2017 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2017.
4. Athey, Susan, and Guido Imbens. "Recursive partitioning for heterogeneous causal effects." Proceedings of the National Academy of Sciences 113.27 (2016): 7353-7360.
5. Künzel, Sören R., et al. "Metalearners for estimating heterogeneous treatment effects using machine learning." Proceedings of the national academy of sciences 116.10 (2019): 4156-4165.
6. Nie, Xinkun, and Stefan Wager. "Quasi-oracle estimation of heterogeneous treatment effects." arXiv preprint arXiv:1712.04912 (2017).
7. Bang, Heejung, and James M. Robins. "Doubly robust estimation in missing data and causal inference models." Biometrics 61.4 (2005): 962-973.
8. Van Der Laan, Mark J., and Daniel Rubin. "Targeted maximum likelihood learning." The international journal of biostatistics 2.1 (2006).
9. Kennedy, Edward H. "Optimal doubly robust estimation of heterogeneous causal effects." arXiv preprint arXiv:2004.14497 (2020).
10. Louizos, Christos, et al. "Causal effect inference with deep latent-variable models." arXiv preprint arXiv:1705.08821 (2017).
11. Shi, Claudia, David M. Blei, and Victor Veitch. "Adapting neural networks for the estimation of treatment effects." 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), 2019.
12. Zhao, Zhenyu, Yumin Zhang, Totte Harinen, and Mike Yung. "Feature Selection Methods for Uplift Modeling." arXiv preprint arXiv:2005.03447 (2020).
13. Zhao, Zhenyu, and Totte Harinen. "Uplift modeling for multiple treatments with cost optimization." In 2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 422-431. IEEE, 2019.
## Related projects
* [uplift](https://cran.r-project.org/web/packages/uplift/index.html): uplift models in R
* [grf](https://cran.r-project.org/web/packages/grf/index.html): generalized random forests that include heterogeneous treatment effect estimation in R
* [rlearner](https://github.com/xnie/rlearner): A R package that implements R-Learner
* [DoWhy](https://github.com/Microsoft/dowhy): Causal inference in Python based on Judea Pearl's do-calculus
* [EconML](https://github.com/microsoft/EconML): A Python package that implements heterogeneous treatment effect estimators from econometrics and machine learning methods
%package help
Summary: Development documents and examples for causalml
Provides: python3-causalml-doc
%description help
[](https://pypi.org/project/causalml/)
[](https://github.com/uber/causalml/actions/workflows/python-test.yaml)
[](http://causalml.readthedocs.io/en/latest/?badge=latest)
[](https://pepy.tech/project/causalml)
[](https://bestpractices.coreinfrastructure.org/projects/3015)
# Disclaimer
This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to change.
# Causal ML: A Python Package for Uplift Modeling and Causal Inference with ML
**Causal ML** is a Python package that provides a suite of uplift modeling and causal inference methods using machine learning algorithms based on recent
research [[1]](#Literature). It provides a standard interface that allows user to estimate the Conditional Average Treatment Effect (CATE) or Individual Treatment
Effect (ITE) from experimental or observational data. Essentially, it estimates the causal impact of intervention `T` on outcome `Y` for users
with observed features `X`, without strong assumptions on the model form. Typical use cases include
* **Campaign targeting optimization**: An important lever to increase ROI in an advertising campaign is to target the ad to the set of customers who will have a favorable response in a given KPI such as engagement or sales. CATE identifies these customers by estimating the effect of the KPI from ad exposure at the individual level from A/B experiment or historical observational data.
* **Personalized engagement**: A company has multiple options to interact with its customers such as different product choices in up-sell or messaging channels for communications. One can use CATE to estimate the heterogeneous treatment effect for each customer and treatment option combination for an optimal personalized recommendation system.
The package currently supports the following methods
* **Tree-based algorithms**
* Uplift tree/random forests on KL divergence, Euclidean Distance, and Chi-Square [[2]](#Literature)
* Uplift tree/random forests on Contextual Treatment Selection [[3]](#Literature)
* Causal Tree [[4]](#Literature) - Work-in-progress
* **Meta-learner algorithms**
* S-learner [[5]](#Literature)
* T-learner [[5]](#Literature)
* X-learner [[5]](#Literature)
* R-learner [[6]](#Literature)
* Doubly Robust (DR) learner [[7]](#Literature)
* TMLE learner [[8]](#Literature)
* **Instrumental variables algorithms**
* 2-Stage Least Squares (2SLS)
* Doubly Robust (DR) IV [[9]](#Literature)
* **Neural-network-based algorithms**
* CEVAE [[10]](#Literature)
* DragonNet [[11]](#Literature) - with `causalml[tf]` installation (see [Installation](#installation))
# Installation
Installation with `conda` is recommended. `conda` environment files for Python 3.6, 3.7, 3.8 and 3.9 are available in the repository. To use models under the `inference.tf` module (e.g. `DragonNet`), additional dependency of `tensorflow` is required. For detailed instructions, see below.
## Install using `conda`:
### Install from `conda-forge`
Directly install from the conda-forge channel using conda.
```sh
$ conda install -c conda-forge causalml
```
### Install with the `conda` virtual environment
This will create a new `conda` virtual environment named `causalml-[tf-]py3x`, where `x` is in `[6, 7, 8, 9]`. e.g. `causalml-py37` or `causalml-tf-py38`. If you want to change the name of the environment, update the relevant YAML file in `envs/`
```
$ git clone https://github.com/uber/causalml.git
$ cd causalml/envs/
$ conda env create -f environment-py38.yml # for the virtual environment with Python 3.8 and CausalML
$ conda activate causalml-py38
(causalml-py38)
```
### Install `causalml` with `tensorflow`
```
$ git clone https://github.com/uber/causalml.git
$ cd causalml/envs/
$ conda env create -f environment-tf-py38.yml # for the virtual environment with Python 3.8 and CausalML
$ conda activate causalml-tf-py38
(causalml-tf-py38) pip install -U numpy # this step is necessary to fix [#338](https://github.com/uber/causalml/issues/338)
```
## Install using `pip`:
```
$ git clone https://github.com/uber/causalml.git
$ cd causalml
$ pip install -r requirements.txt
$ pip install causalml
```
### Install `causalml` with `tensorflow`
```
$ git clone https://github.com/uber/causalml.git
$ cd causalml
$ pip install -r requirements-tf.txt
$ pip install causalml[tf]
$ pip install -U numpy # this step is necessary to fix [#338](https://github.com/uber/causalml/issues/338)
```
## Install from source:
```
$ git clone https://github.com/uber/causalml.git
$ cd causalml
$ pip install -r requirements.txt
$ python setup.py build_ext --inplace
$ python setup.py install
```
# Quick Start
## Average Treatment Effect Estimation with S, T, X, and R Learners
```python
from causalml.inference.meta import LRSRegressor
from causalml.inference.meta import XGBTRegressor, MLPTRegressor
from causalml.inference.meta import BaseXRegressor
from causalml.inference.meta import BaseRRegressor
from xgboost import XGBRegressor
from causalml.dataset import synthetic_data
y, X, treatment, _, _, e = synthetic_data(mode=1, n=1000, p=5, sigma=1.0)
lr = LRSRegressor()
te, lb, ub = lr.estimate_ate(X, treatment, y)
print('Average Treatment Effect (Linear Regression): {:.2f} ({:.2f}, {:.2f})'.format(te[0], lb[0], ub[0]))
xg = XGBTRegressor(random_state=42)
te, lb, ub = xg.estimate_ate(X, treatment, y)
print('Average Treatment Effect (XGBoost): {:.2f} ({:.2f}, {:.2f})'.format(te[0], lb[0], ub[0]))
nn = MLPTRegressor(hidden_layer_sizes=(10, 10),
learning_rate_init=.1,
early_stopping=True,
random_state=42)
te, lb, ub = nn.estimate_ate(X, treatment, y)
print('Average Treatment Effect (Neural Network (MLP)): {:.2f} ({:.2f}, {:.2f})'.format(te[0], lb[0], ub[0]))
xl = BaseXRegressor(learner=XGBRegressor(random_state=42))
te, lb, ub = xl.estimate_ate(X, treatment, y, e)
print('Average Treatment Effect (BaseXRegressor using XGBoost): {:.2f} ({:.2f}, {:.2f})'.format(te[0], lb[0], ub[0]))
rl = BaseRRegressor(learner=XGBRegressor(random_state=42))
te, lb, ub = rl.estimate_ate(X=X, p=e, treatment=treatment, y=y)
print('Average Treatment Effect (BaseRRegressor using XGBoost): {:.2f} ({:.2f}, {:.2f})'.format(te[0], lb[0], ub[0]))
```
See the [Meta-learner example notebook](https://github.com/uber/causalml/blob/master/examples/meta_learners_with_synthetic_data.ipynb) for details.
## Interpretable Causal ML
Causal ML provides methods to interpret the treatment effect models trained as follows:
### Meta Learner Feature Importances
```python
from causalml.inference.meta import BaseSRegressor, BaseTRegressor, BaseXRegressor, BaseRRegressor
from causalml.dataset.regression import synthetic_data
# Load synthetic data
y, X, treatment, tau, b, e = synthetic_data(mode=1, n=10000, p=25, sigma=0.5)
w_multi = np.array(['treatment_A' if x==1 else 'control' for x in treatment]) # customize treatment/control names
slearner = BaseSRegressor(LGBMRegressor(), control_name='control')
slearner.estimate_ate(X, w_multi, y)
slearner_tau = slearner.fit_predict(X, w_multi, y)
model_tau_feature = RandomForestRegressor() # specify model for model_tau_feature
slearner.get_importance(X=X, tau=slearner_tau, model_tau_feature=model_tau_feature,
normalize=True, method='auto', features=feature_names)
# Using the feature_importances_ method in the base learner (LGBMRegressor() in this example)
slearner.plot_importance(X=X, tau=slearner_tau, normalize=True, method='auto')
# Using eli5's PermutationImportance
slearner.plot_importance(X=X, tau=slearner_tau, normalize=True, method='permutation')
# Using SHAP
shap_slearner = slearner.get_shap_values(X=X, tau=slearner_tau)
# Plot shap values without specifying shap_dict
slearner.plot_shap_values(X=X, tau=slearner_tau)
# Plot shap values WITH specifying shap_dict
slearner.plot_shap_values(X=X, shap_dict=shap_slearner)
# interaction_idx set to 'auto' (searches for feature with greatest approximate interaction)
slearner.plot_shap_dependence(treatment_group='treatment_A',
feature_idx=1,
X=X,
tau=slearner_tau,
interaction_idx='auto')
```
<div align="center">
<img width="629px" height="618px" src="https://raw.githubusercontent.com/uber/causalml/master/docs/_static/img/shap_vis.png">
</div>
See the [feature interpretations example notebook](https://github.com/uber/causalml/blob/master/examples/feature_interpretations_example.ipynb) for details.
### Uplift Tree Visualization
```python
from IPython.display import Image
from causalml.inference.tree import UpliftTreeClassifier, UpliftRandomForestClassifier
from causalml.inference.tree import uplift_tree_string, uplift_tree_plot
uplift_model = UpliftTreeClassifier(max_depth=5, min_samples_leaf=200, min_samples_treatment=50,
n_reg=100, evaluationFunction='KL', control_name='control')
uplift_model.fit(df[features].values,
treatment=df['treatment_group_key'].values,
y=df['conversion'].values)
graph = uplift_tree_plot(uplift_model.fitted_uplift_tree, features)
Image(graph.create_png())
```
<div align="center">
<img width="800px" height="479px" src="https://raw.githubusercontent.com/uber/causalml/master/docs/_static/img/uplift_tree_vis.png">
</div>
See the [Uplift Tree visualization example notebook](https://github.com/uber/causalml/blob/master/examples/uplift_tree_visualization.ipynb) for details.
# Contributing
We welcome community contributors to the project. Before you start, please read our [code of conduct](https://github.com/uber/causalml/blob/master/CODE_OF_CONDUCT.md) and check out [contributing guidelines](./CONTRIBUTING.md) first.
# Versioning
We document versions and changes in our [changelog](https://github.com/uber/causalml/blob/master/docs/changelog.rst).
# License
This project is licensed under the Apache 2.0 License - see the [LICENSE](https://github.com/uber/causalml/blob/master/LICENSE) file for details.
# References
## Documentation
* [Causal ML API documentation](https://causalml.readthedocs.io/en/latest/about.html)
## Conference Talks and Publications by CausalML Team
* (Talk) Introduction to CausalML at [Causal Data Science Meeting 2021](https://www.causalscience.org/meeting/program/day-2/)
* (Talk) Introduction to CausalML at [2021 Conference on Digital Experimentation @ MIT (CODE@MIT)](https://ide.mit.edu/events/2021-conference-on-digital-experimentation-mit-codemit/)
* (Talk) Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber at [KDD 2021 Tutorials](https://kdd.org/kdd2021/tutorials) ([website and slide links](https://causal-machine-learning.github.io/kdd2021-tutorial/))
* (Publication) CausalML White Paper [Causalml: Python package for causal machine learning](https://arxiv.org/abs/2002.11631)
* (Publication) [Uplift Modeling for Multiple Treatments with Cost Optimization](https://ieeexplore.ieee.org/document/8964199) at [2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA)](http://203.170.84.89/~idawis33/dsaa2019/preliminary-program/)
* (Publication) [Feature Selection Methods for Uplift Modeling](https://arxiv.org/abs/2005.03447)
## Citation
To cite CausalML in publications, you can refer to the following sources:
Whitepaper:
[CausalML: Python Package for Causal Machine Learning](https://arxiv.org/abs/2002.11631)
Bibtex:
> @misc{chen2020causalml,
> title={CausalML: Python Package for Causal Machine Learning},
> author={Huigang Chen and Totte Harinen and Jeong-Yoon Lee and Mike Yung and Zhenyu Zhao},
> year={2020},
> eprint={2002.11631},
> archivePrefix={arXiv},
> primaryClass={cs.CY}
>}
## Literature
1. Chen, Huigang, Totte Harinen, Jeong-Yoon Lee, Mike Yung, and Zhenyu Zhao. "Causalml: Python package for causal machine learning." arXiv preprint arXiv:2002.11631 (2020).
2. Radcliffe, Nicholas J., and Patrick D. Surry. "Real-world uplift modelling with significance-based uplift trees." White Paper TR-2011-1, Stochastic Solutions (2011): 1-33.
3. Zhao, Yan, Xiao Fang, and David Simchi-Levi. "Uplift modeling with multiple treatments and general response types." Proceedings of the 2017 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2017.
4. Athey, Susan, and Guido Imbens. "Recursive partitioning for heterogeneous causal effects." Proceedings of the National Academy of Sciences 113.27 (2016): 7353-7360.
5. Künzel, Sören R., et al. "Metalearners for estimating heterogeneous treatment effects using machine learning." Proceedings of the national academy of sciences 116.10 (2019): 4156-4165.
6. Nie, Xinkun, and Stefan Wager. "Quasi-oracle estimation of heterogeneous treatment effects." arXiv preprint arXiv:1712.04912 (2017).
7. Bang, Heejung, and James M. Robins. "Doubly robust estimation in missing data and causal inference models." Biometrics 61.4 (2005): 962-973.
8. Van Der Laan, Mark J., and Daniel Rubin. "Targeted maximum likelihood learning." The international journal of biostatistics 2.1 (2006).
9. Kennedy, Edward H. "Optimal doubly robust estimation of heterogeneous causal effects." arXiv preprint arXiv:2004.14497 (2020).
10. Louizos, Christos, et al. "Causal effect inference with deep latent-variable models." arXiv preprint arXiv:1705.08821 (2017).
11. Shi, Claudia, David M. Blei, and Victor Veitch. "Adapting neural networks for the estimation of treatment effects." 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), 2019.
12. Zhao, Zhenyu, Yumin Zhang, Totte Harinen, and Mike Yung. "Feature Selection Methods for Uplift Modeling." arXiv preprint arXiv:2005.03447 (2020).
13. Zhao, Zhenyu, and Totte Harinen. "Uplift modeling for multiple treatments with cost optimization." In 2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 422-431. IEEE, 2019.
## Related projects
* [uplift](https://cran.r-project.org/web/packages/uplift/index.html): uplift models in R
* [grf](https://cran.r-project.org/web/packages/grf/index.html): generalized random forests that include heterogeneous treatment effect estimation in R
* [rlearner](https://github.com/xnie/rlearner): A R package that implements R-Learner
* [DoWhy](https://github.com/Microsoft/dowhy): Causal inference in Python based on Judea Pearl's do-calculus
* [EconML](https://github.com/microsoft/EconML): A Python package that implements heterogeneous treatment effect estimators from econometrics and machine learning methods
%prep
%autosetup -n causalml-0.13.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-causalml -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 0.13.0-1
- Package Spec generated
|