summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--python-cca-zoo.spec415
-rw-r--r--sources1
3 files changed, 417 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..2258012 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/cca_zoo-1.17.7.tar.gz
diff --git a/python-cca-zoo.spec b/python-cca-zoo.spec
new file mode 100644
index 0000000..de19a71
--- /dev/null
+++ b/python-cca-zoo.spec
@@ -0,0 +1,415 @@
+%global _empty_manifest_terminate_build 0
+Name: python-cca-zoo
+Version: 1.17.7
+Release: 1
+Summary: Canonical Correlation Analysis Zoo: A collection of Regularized, Deep Learning based, Kernel, and Probabilistic methods in a scikit-learn style framework
+License: MIT
+URL: https://github.com/jameschapman19/cca_zoo
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/79/58/d137e5dfc61e77e2abf5d1211d5b30bbaa82635adc44fe58312498342ca2/cca_zoo-1.17.7.tar.gz
+BuildArch: noarch
+
+Requires: python3-numpy
+Requires: python3-scipy
+Requires: python3-scikit-learn
+Requires: python3-scikit-prox
+Requires: python3-pytest
+Requires: python3-matplotlib
+Requires: python3-pandas
+Requires: python3-seaborn
+Requires: python3-tensorly
+Requires: python3-joblib
+Requires: python3-mvlearn
+Requires: python3-tqdm
+Requires: python3-setuptools
+Requires: python3-torch
+Requires: python3-torchvision
+Requires: python3-pytorch-lightning
+Requires: python3-jax
+Requires: python3-numpyro
+Requires: python3-arviz
+Requires: python3-torch
+Requires: python3-torchvision
+Requires: python3-pytorch-lightning
+Requires: python3-jax
+Requires: python3-numpyro
+Requires: python3-arviz
+
+%description
+[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.5748062.svg)](https://doi.org/10.5281/zenodo.4382739)
+[![codecov](https://codecov.io/gh/jameschapman19/cca_zoo/branch/main/graph/badge.svg?token=JHG9VUB0L8)](https://codecov.io/gh/jameschapman19/cca_zoo)
+![Build Status](https://github.com/jameschapman19/cca_zoo/actions/workflows/python-package.yml/badge.svg)
+[![Documentation Status](https://readthedocs.org/projects/cca-zoo/badge/?version=latest)](https://cca-zoo.readthedocs.io/en/latest/?badge=latest)
+[![version](https://img.shields.io/pypi/v/cca-zoo)](https://pypi.org/project/cca-zoo/)
+[![downloads](https://img.shields.io/pypi/dm/cca-zoo)](https://pypi.org/project/cca-zoo/)
+[![DOI](https://joss.theoj.org/papers/10.21105/joss.03823/status.svg)](https://doi.org/10.21105/joss.03823)
+
+# CCA-Zoo
+
+`cca-zoo` is a collection of linear, kernel, and deep methods for canonical correlation analysis of multiview data.
+Where possible it follows the `scikit-learn`/`mvlearn` APIs and models therefore have `fit`/`transform`/`fit_transform`
+methods as standard.
+
+## Installation
+
+Dependency of some implemented algorithms are heavy, such as `pytorch` and `numpyro`.
+We provide several options to accomodate the user's needs.
+For full details of algorithms included, please refer to section [Implemented Methods](#implemented-methods)
+
+Standard installation:
+
+```
+pip install cca-zoo
+```
+
+For deep learning elements use:
+
+```
+pip install cca-zoo[deep]
+```
+
+For probabilistic elements use:
+
+```
+pip install cca-zoo[probabilistic]
+```
+
+## Documentation
+
+Available at https://cca-zoo.readthedocs.io/en/latest/
+
+## Citation:
+
+CCA-Zoo is intended as research software. Citations and use of our software help us justify the effort which has gone
+into, and will keep going into, maintaining and growing this project. Stars on the repo are also greatly appreciated :)
+
+If you have used CCA-Zoo in your research, please consider citing our JOSS paper:
+
+Chapman et al., (2021). CCA-Zoo: A collection of Regularized, Deep Learning based, Kernel, and Probabilistic CCA methods
+in a scikit-learn style framework. Journal of Open Source Software, 6(68), 3823, https://doi.org/10.21105/joss.03823
+
+With bibtex entry:
+
+```bibtex
+@article{Chapman2021,
+ doi = {10.21105/joss.03823},
+ url = {https://doi.org/10.21105/joss.03823},
+ year = {2021},
+ publisher = {The Open Journal},
+ volume = {6},
+ number = {68},
+ pages = {3823},
+ author = {James Chapman and Hao-Ting Wang},
+ title = {CCA-Zoo: A collection of Regularized, Deep Learning based, Kernel, and Probabilistic CCA methods in a scikit-learn style framework},
+ journal = {Journal of Open Source Software}
+}
+```
+
+## Contributions
+
+A guide to contributions is available at https://cca-zoo.readthedocs.io/en/latest/developer_info/contribute.html
+
+## Sources
+
+I've added this section to give due credit to the repositories that helped me in addition to their copyright notices in
+the code where relevant.
+
+### Other Implementations of (regularised)CCA/PLS
+
+[MATLAB implementation](https://github.com/anaston/PLS_CCA_framework)
+
+### Implementation of Sparse PLS
+
+MATLAB implementation of SPLS by [@jmmonteiro](https://github.com/jmmonteiro/spls)
+
+### Other Implementations of DCCA/DCCAE
+
+Keras implementation of DCCA from [@VahidooX's github page](https://github.com/VahidooX)
+
+The following are the other implementations of DCCA in MATLAB and C++. These codes are written by the authors of the
+original paper:
+
+[Torch implementation](https://github.com/Michaelvll/DeepCCA) of DCCA from @MichaelVll & @Arminarj
+
+C++ implementation of DCCA from Galen Andrew's [website](https://homes.cs.washington.edu/~galen/)
+
+MATLAB implementation of DCCA/DCCAE from Weiran Wang's [website](http://ttic.uchicago.edu/~wwang5/dccae.html)
+
+MATLAB implementation of [TCCA](https://github.com/rciszek/mdr_tcca)
+
+### Implementation of VAE
+
+[Torch implementation of VAE](https://github.com/pytorch/examples/tree/master/vae)
+
+
+
+
+%package -n python3-cca-zoo
+Summary: Canonical Correlation Analysis Zoo: A collection of Regularized, Deep Learning based, Kernel, and Probabilistic methods in a scikit-learn style framework
+Provides: python-cca-zoo
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-cca-zoo
+[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.5748062.svg)](https://doi.org/10.5281/zenodo.4382739)
+[![codecov](https://codecov.io/gh/jameschapman19/cca_zoo/branch/main/graph/badge.svg?token=JHG9VUB0L8)](https://codecov.io/gh/jameschapman19/cca_zoo)
+![Build Status](https://github.com/jameschapman19/cca_zoo/actions/workflows/python-package.yml/badge.svg)
+[![Documentation Status](https://readthedocs.org/projects/cca-zoo/badge/?version=latest)](https://cca-zoo.readthedocs.io/en/latest/?badge=latest)
+[![version](https://img.shields.io/pypi/v/cca-zoo)](https://pypi.org/project/cca-zoo/)
+[![downloads](https://img.shields.io/pypi/dm/cca-zoo)](https://pypi.org/project/cca-zoo/)
+[![DOI](https://joss.theoj.org/papers/10.21105/joss.03823/status.svg)](https://doi.org/10.21105/joss.03823)
+
+# CCA-Zoo
+
+`cca-zoo` is a collection of linear, kernel, and deep methods for canonical correlation analysis of multiview data.
+Where possible it follows the `scikit-learn`/`mvlearn` APIs and models therefore have `fit`/`transform`/`fit_transform`
+methods as standard.
+
+## Installation
+
+Dependency of some implemented algorithms are heavy, such as `pytorch` and `numpyro`.
+We provide several options to accomodate the user's needs.
+For full details of algorithms included, please refer to section [Implemented Methods](#implemented-methods)
+
+Standard installation:
+
+```
+pip install cca-zoo
+```
+
+For deep learning elements use:
+
+```
+pip install cca-zoo[deep]
+```
+
+For probabilistic elements use:
+
+```
+pip install cca-zoo[probabilistic]
+```
+
+## Documentation
+
+Available at https://cca-zoo.readthedocs.io/en/latest/
+
+## Citation:
+
+CCA-Zoo is intended as research software. Citations and use of our software help us justify the effort which has gone
+into, and will keep going into, maintaining and growing this project. Stars on the repo are also greatly appreciated :)
+
+If you have used CCA-Zoo in your research, please consider citing our JOSS paper:
+
+Chapman et al., (2021). CCA-Zoo: A collection of Regularized, Deep Learning based, Kernel, and Probabilistic CCA methods
+in a scikit-learn style framework. Journal of Open Source Software, 6(68), 3823, https://doi.org/10.21105/joss.03823
+
+With bibtex entry:
+
+```bibtex
+@article{Chapman2021,
+ doi = {10.21105/joss.03823},
+ url = {https://doi.org/10.21105/joss.03823},
+ year = {2021},
+ publisher = {The Open Journal},
+ volume = {6},
+ number = {68},
+ pages = {3823},
+ author = {James Chapman and Hao-Ting Wang},
+ title = {CCA-Zoo: A collection of Regularized, Deep Learning based, Kernel, and Probabilistic CCA methods in a scikit-learn style framework},
+ journal = {Journal of Open Source Software}
+}
+```
+
+## Contributions
+
+A guide to contributions is available at https://cca-zoo.readthedocs.io/en/latest/developer_info/contribute.html
+
+## Sources
+
+I've added this section to give due credit to the repositories that helped me in addition to their copyright notices in
+the code where relevant.
+
+### Other Implementations of (regularised)CCA/PLS
+
+[MATLAB implementation](https://github.com/anaston/PLS_CCA_framework)
+
+### Implementation of Sparse PLS
+
+MATLAB implementation of SPLS by [@jmmonteiro](https://github.com/jmmonteiro/spls)
+
+### Other Implementations of DCCA/DCCAE
+
+Keras implementation of DCCA from [@VahidooX's github page](https://github.com/VahidooX)
+
+The following are the other implementations of DCCA in MATLAB and C++. These codes are written by the authors of the
+original paper:
+
+[Torch implementation](https://github.com/Michaelvll/DeepCCA) of DCCA from @MichaelVll & @Arminarj
+
+C++ implementation of DCCA from Galen Andrew's [website](https://homes.cs.washington.edu/~galen/)
+
+MATLAB implementation of DCCA/DCCAE from Weiran Wang's [website](http://ttic.uchicago.edu/~wwang5/dccae.html)
+
+MATLAB implementation of [TCCA](https://github.com/rciszek/mdr_tcca)
+
+### Implementation of VAE
+
+[Torch implementation of VAE](https://github.com/pytorch/examples/tree/master/vae)
+
+
+
+
+%package help
+Summary: Development documents and examples for cca-zoo
+Provides: python3-cca-zoo-doc
+%description help
+[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.5748062.svg)](https://doi.org/10.5281/zenodo.4382739)
+[![codecov](https://codecov.io/gh/jameschapman19/cca_zoo/branch/main/graph/badge.svg?token=JHG9VUB0L8)](https://codecov.io/gh/jameschapman19/cca_zoo)
+![Build Status](https://github.com/jameschapman19/cca_zoo/actions/workflows/python-package.yml/badge.svg)
+[![Documentation Status](https://readthedocs.org/projects/cca-zoo/badge/?version=latest)](https://cca-zoo.readthedocs.io/en/latest/?badge=latest)
+[![version](https://img.shields.io/pypi/v/cca-zoo)](https://pypi.org/project/cca-zoo/)
+[![downloads](https://img.shields.io/pypi/dm/cca-zoo)](https://pypi.org/project/cca-zoo/)
+[![DOI](https://joss.theoj.org/papers/10.21105/joss.03823/status.svg)](https://doi.org/10.21105/joss.03823)
+
+# CCA-Zoo
+
+`cca-zoo` is a collection of linear, kernel, and deep methods for canonical correlation analysis of multiview data.
+Where possible it follows the `scikit-learn`/`mvlearn` APIs and models therefore have `fit`/`transform`/`fit_transform`
+methods as standard.
+
+## Installation
+
+Dependency of some implemented algorithms are heavy, such as `pytorch` and `numpyro`.
+We provide several options to accomodate the user's needs.
+For full details of algorithms included, please refer to section [Implemented Methods](#implemented-methods)
+
+Standard installation:
+
+```
+pip install cca-zoo
+```
+
+For deep learning elements use:
+
+```
+pip install cca-zoo[deep]
+```
+
+For probabilistic elements use:
+
+```
+pip install cca-zoo[probabilistic]
+```
+
+## Documentation
+
+Available at https://cca-zoo.readthedocs.io/en/latest/
+
+## Citation:
+
+CCA-Zoo is intended as research software. Citations and use of our software help us justify the effort which has gone
+into, and will keep going into, maintaining and growing this project. Stars on the repo are also greatly appreciated :)
+
+If you have used CCA-Zoo in your research, please consider citing our JOSS paper:
+
+Chapman et al., (2021). CCA-Zoo: A collection of Regularized, Deep Learning based, Kernel, and Probabilistic CCA methods
+in a scikit-learn style framework. Journal of Open Source Software, 6(68), 3823, https://doi.org/10.21105/joss.03823
+
+With bibtex entry:
+
+```bibtex
+@article{Chapman2021,
+ doi = {10.21105/joss.03823},
+ url = {https://doi.org/10.21105/joss.03823},
+ year = {2021},
+ publisher = {The Open Journal},
+ volume = {6},
+ number = {68},
+ pages = {3823},
+ author = {James Chapman and Hao-Ting Wang},
+ title = {CCA-Zoo: A collection of Regularized, Deep Learning based, Kernel, and Probabilistic CCA methods in a scikit-learn style framework},
+ journal = {Journal of Open Source Software}
+}
+```
+
+## Contributions
+
+A guide to contributions is available at https://cca-zoo.readthedocs.io/en/latest/developer_info/contribute.html
+
+## Sources
+
+I've added this section to give due credit to the repositories that helped me in addition to their copyright notices in
+the code where relevant.
+
+### Other Implementations of (regularised)CCA/PLS
+
+[MATLAB implementation](https://github.com/anaston/PLS_CCA_framework)
+
+### Implementation of Sparse PLS
+
+MATLAB implementation of SPLS by [@jmmonteiro](https://github.com/jmmonteiro/spls)
+
+### Other Implementations of DCCA/DCCAE
+
+Keras implementation of DCCA from [@VahidooX's github page](https://github.com/VahidooX)
+
+The following are the other implementations of DCCA in MATLAB and C++. These codes are written by the authors of the
+original paper:
+
+[Torch implementation](https://github.com/Michaelvll/DeepCCA) of DCCA from @MichaelVll & @Arminarj
+
+C++ implementation of DCCA from Galen Andrew's [website](https://homes.cs.washington.edu/~galen/)
+
+MATLAB implementation of DCCA/DCCAE from Weiran Wang's [website](http://ttic.uchicago.edu/~wwang5/dccae.html)
+
+MATLAB implementation of [TCCA](https://github.com/rciszek/mdr_tcca)
+
+### Implementation of VAE
+
+[Torch implementation of VAE](https://github.com/pytorch/examples/tree/master/vae)
+
+
+
+
+%prep
+%autosetup -n cca-zoo-1.17.7
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-cca-zoo -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.17.7-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..39de814
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+b3daa78f56c13b667e8e0aa52f10311c cca_zoo-1.17.7.tar.gz