summaryrefslogtreecommitdiff
path: root/python-celerite2.spec
blob: 5e39f402f4a440147b762498298d4d9bd30d24cc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
%global _empty_manifest_terminate_build 0
Name:		python-celerite2
Version:	0.2.1
Release:	1
Summary:	Fast and scalable Gaussian Processes in 1D
License:	MIT
URL:		https://celerite2.readthedocs.io
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/8c/1d/89293a96e3f99e6a30ce1405c4232200c1f9ba1a14253f91827a39b1a90a/celerite2-0.2.1.tar.gz

Requires:	python3-numpy
Requires:	python3-isort
Requires:	python3-black
Requires:	python3-black-nbconvert
Requires:	python3-coverage[toml]
Requires:	python3-pytest
Requires:	python3-pytest-cov
Requires:	python3-scipy
Requires:	python3-celerite
Requires:	python3-pep517
Requires:	python3-twine
Requires:	python3-pre-commit
Requires:	python3-nbstripout
Requires:	python3-flake8
Requires:	python3-sphinx
Requires:	python3-sphinx-material
Requires:	python3-sphinx-copybutton
Requires:	python3-rtds-action
Requires:	python3-nbsphinx
Requires:	python3-breathe
Requires:	python3-ipython
Requires:	python3-jax
Requires:	python3-jaxlib
Requires:	python3-pymc3
Requires:	python3-aesara-theano-fallback
Requires:	python3-pep517
Requires:	python3-twine
Requires:	python3-isort
Requires:	python3-black
Requires:	python3-black-nbconvert
Requires:	python3-coverage[toml]
Requires:	python3-pytest
Requires:	python3-pytest-cov
Requires:	python3-scipy
Requires:	python3-celerite
Requires:	python3-pymc3
Requires:	python3-aesara-theano-fallback
Requires:	python3-jupytext
Requires:	python3-jupyter
Requires:	python3-nbconvert
Requires:	python3-matplotlib
Requires:	python3-scipy
Requires:	python3-emcee
Requires:	python3-pymc3
Requires:	python3-aesara-theano-fallback
Requires:	python3-tqdm
Requires:	python3-numpyro

%description
# celerite2

_celerite_ is an algorithm for fast and scalable Gaussian Process (GP)
Regression in one dimension and this library, _celerite2_ is a re-write of the
original [celerite project](https://celerite.readthedocs.io) to improve
numerical stability and integration with various machine learning frameworks.  Documentation
for this version can be found [here](https://celerite2.readthedocs.io/en/latest/).
This new implementation includes interfaces in Python and C++, with full support for
Theano/PyMC3 and JAX.

This documentation won't teach you the fundamentals of GP modeling but the best
resource for learning about this is available for free online: [Rasmussen &
Williams (2006)](http://www.gaussianprocess.org/gpml/). Similarly, the
_celerite_ algorithm is restricted to a specific class of covariance functions
(see [the original paper](https://arxiv.org/abs/1703.09710) for more information
and [a recent generalization](https://arxiv.org/abs/2007.05799) for extensions
to structured two-dimensional data). If you need scalable GPs with more general
covariance functions, [GPyTorch](https://gpytorch.ai/) might be a good choice.




%package -n python3-celerite2
Summary:	Fast and scalable Gaussian Processes in 1D
Provides:	python-celerite2
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
BuildRequires:	python3-cffi
BuildRequires:	gcc
BuildRequires:	gdb
%description -n python3-celerite2
# celerite2

_celerite_ is an algorithm for fast and scalable Gaussian Process (GP)
Regression in one dimension and this library, _celerite2_ is a re-write of the
original [celerite project](https://celerite.readthedocs.io) to improve
numerical stability and integration with various machine learning frameworks.  Documentation
for this version can be found [here](https://celerite2.readthedocs.io/en/latest/).
This new implementation includes interfaces in Python and C++, with full support for
Theano/PyMC3 and JAX.

This documentation won't teach you the fundamentals of GP modeling but the best
resource for learning about this is available for free online: [Rasmussen &
Williams (2006)](http://www.gaussianprocess.org/gpml/). Similarly, the
_celerite_ algorithm is restricted to a specific class of covariance functions
(see [the original paper](https://arxiv.org/abs/1703.09710) for more information
and [a recent generalization](https://arxiv.org/abs/2007.05799) for extensions
to structured two-dimensional data). If you need scalable GPs with more general
covariance functions, [GPyTorch](https://gpytorch.ai/) might be a good choice.




%package help
Summary:	Development documents and examples for celerite2
Provides:	python3-celerite2-doc
%description help
# celerite2

_celerite_ is an algorithm for fast and scalable Gaussian Process (GP)
Regression in one dimension and this library, _celerite2_ is a re-write of the
original [celerite project](https://celerite.readthedocs.io) to improve
numerical stability and integration with various machine learning frameworks.  Documentation
for this version can be found [here](https://celerite2.readthedocs.io/en/latest/).
This new implementation includes interfaces in Python and C++, with full support for
Theano/PyMC3 and JAX.

This documentation won't teach you the fundamentals of GP modeling but the best
resource for learning about this is available for free online: [Rasmussen &
Williams (2006)](http://www.gaussianprocess.org/gpml/). Similarly, the
_celerite_ algorithm is restricted to a specific class of covariance functions
(see [the original paper](https://arxiv.org/abs/1703.09710) for more information
and [a recent generalization](https://arxiv.org/abs/2007.05799) for extensions
to structured two-dimensional data). If you need scalable GPs with more general
covariance functions, [GPyTorch](https://gpytorch.ai/) might be a good choice.




%prep
%autosetup -n celerite2-0.2.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-celerite2 -f filelist.lst
%dir %{python3_sitearch}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.1-1
- Package Spec generated