summaryrefslogtreecommitdiff
path: root/python-chainer.spec
blob: bdb780f578eb930b7a7c2c619e58df2cd257c2c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
%global _empty_manifest_terminate_build 0
Name:		python-chainer
Version:	7.8.1
Release:	1
Summary:	A flexible framework of neural networks
License:	MIT License
URL:		https://chainer.org/
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/86/40/0d27458c1ac3e1c8f1a62ab62e3ec9e443412fa51d1e638ac669706097b7/chainer-7.8.1.tar.gz
BuildArch:	noarch


%description
<div align="center"><img src="https://raw.githubusercontent.com/chainer/chainer/master/docs/image/chainer_red_h.png" width="400"/></div>

# Chainer: A deep learning framework

[![pypi](https://img.shields.io/pypi/v/chainer.svg)](https://pypi.python.org/pypi/chainer)
[![GitHub license](https://img.shields.io/github/license/chainer/chainer.svg)](https://github.com/chainer/chainer)
[![travis](https://img.shields.io/travis/chainer/chainer/master.svg)](https://travis-ci.org/chainer/chainer)
[![coveralls](https://img.shields.io/coveralls/chainer/chainer.svg)](https://coveralls.io/github/chainer/chainer)
[![Read the Docs](https://readthedocs.org/projects/chainer/badge/?version=stable)](https://docs.chainer.org/en/stable/?badge=stable)
[![Optuna](https://img.shields.io/badge/Optuna-integrated-blue)](https://optuna.org)

[**Website**](https://chainer.org/)
| [**Docs**](https://docs.chainer.org/en/stable/)
| [**Install Guide**](https://docs.chainer.org/en/stable/install.html)
| **Tutorials** ([ja](https://tutorials.chainer.org/ja/))
| **Examples** ([Official](examples), [External](https://github.com/chainer-community/awesome-chainer))
| [**Concepts**](https://docs.chainer.org/en/stable/guides/)
| [**ChainerX**](#chainerx)

**Forum** ([en](https://groups.google.com/forum/#!forum/chainer), [ja](https://groups.google.com/forum/#!forum/chainer-jp))
| **Slack invitation** ([en](https://bit.ly/go-chainer-slack), [ja](https://bit.ly/go-chainer-jp-slack))
| **Twitter** ([en](https://twitter.com/CuPy_Team), [ja](https://twitter.com/ChainerJP))

*Chainer* is a Python-based deep learning framework aiming at flexibility.
It provides automatic differentiation APIs based on the **define-by-run** approach (a.k.a. dynamic computational graphs) as well as object-oriented high-level APIs to build and train neural networks.
It also supports CUDA/cuDNN using [CuPy](https://github.com/cupy/cupy) for high performance training and inference.
For more details about Chainer, see the documents and resources listed above and join the community in Forum, Slack, and Twitter.

***Notice: As [announced](https://chainer.org/announcement/2019/12/05/released-v7.html), Chainer is under the maintenance phase and further development will be limited to bug-fixes and maintenance only.***

## Installation

*For more details, see the [installation guide](https://docs.chainer.org/en/stable/install.html).*

To install Chainer, use `pip`.

```sh
$ pip install chainer
```

To enable CUDA support, [CuPy](https://github.com/cupy/cupy) is required.
Refer to the [CuPy installation guide](https://docs-cupy.chainer.org/en/stable/install.html).


## Docker image

We are providing the official Docker image.
This image supports [nvidia-docker](https://github.com/NVIDIA/nvidia-docker).
Login to the environment with the following command, and run the Python interpreter to use Chainer with CUDA and cuDNN support.

```
$ nvidia-docker run -it chainer/chainer /bin/bash
```


## Contribution

See the [contribution guide](https://docs.chainer.org/en/stable/contribution.html).


## ChainerX

See the [ChainerX documentation](https://docs.chainer.org/en/stable/chainerx/index.html).


## License

MIT License (see `LICENSE` file).


## More information

- [Release notes](https://github.com/chainer/chainer/releases)

## References

Tokui, Seiya, et al. "Chainer: A Deep Learning Framework for Accelerating the Research Cycle." *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*. ACM, 2019.
[URL](https://dl.acm.org/citation.cfm?id=3330756) [BibTex](chainer2019_bibtex.txt)

Tokui, S., Oono, K., Hido, S. and Clayton, J.,
Chainer: a Next-Generation Open Source Framework for Deep Learning,
*Proceedings of Workshop on Machine Learning Systems(LearningSys) in
The Twenty-ninth Annual Conference on Neural Information Processing Systems (NIPS)*, (2015)
[URL](http://learningsys.org/papers/LearningSys_2015_paper_33.pdf), [BibTex](chainer_bibtex.txt)

Akiba, T., Fukuda, K. and Suzuki, S.,
ChainerMN: Scalable Distributed Deep Learning Framework,
*Proceedings of Workshop on ML Systems in
The Thirty-first Annual Conference on Neural Information Processing Systems (NIPS)*, (2017)
[URL](http://learningsys.org/nips17/assets/papers/paper_25.pdf), [BibTex](chainermn_bibtex.txt)




%package -n python3-chainer
Summary:	A flexible framework of neural networks
Provides:	python-chainer
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-chainer
<div align="center"><img src="https://raw.githubusercontent.com/chainer/chainer/master/docs/image/chainer_red_h.png" width="400"/></div>

# Chainer: A deep learning framework

[![pypi](https://img.shields.io/pypi/v/chainer.svg)](https://pypi.python.org/pypi/chainer)
[![GitHub license](https://img.shields.io/github/license/chainer/chainer.svg)](https://github.com/chainer/chainer)
[![travis](https://img.shields.io/travis/chainer/chainer/master.svg)](https://travis-ci.org/chainer/chainer)
[![coveralls](https://img.shields.io/coveralls/chainer/chainer.svg)](https://coveralls.io/github/chainer/chainer)
[![Read the Docs](https://readthedocs.org/projects/chainer/badge/?version=stable)](https://docs.chainer.org/en/stable/?badge=stable)
[![Optuna](https://img.shields.io/badge/Optuna-integrated-blue)](https://optuna.org)

[**Website**](https://chainer.org/)
| [**Docs**](https://docs.chainer.org/en/stable/)
| [**Install Guide**](https://docs.chainer.org/en/stable/install.html)
| **Tutorials** ([ja](https://tutorials.chainer.org/ja/))
| **Examples** ([Official](examples), [External](https://github.com/chainer-community/awesome-chainer))
| [**Concepts**](https://docs.chainer.org/en/stable/guides/)
| [**ChainerX**](#chainerx)

**Forum** ([en](https://groups.google.com/forum/#!forum/chainer), [ja](https://groups.google.com/forum/#!forum/chainer-jp))
| **Slack invitation** ([en](https://bit.ly/go-chainer-slack), [ja](https://bit.ly/go-chainer-jp-slack))
| **Twitter** ([en](https://twitter.com/CuPy_Team), [ja](https://twitter.com/ChainerJP))

*Chainer* is a Python-based deep learning framework aiming at flexibility.
It provides automatic differentiation APIs based on the **define-by-run** approach (a.k.a. dynamic computational graphs) as well as object-oriented high-level APIs to build and train neural networks.
It also supports CUDA/cuDNN using [CuPy](https://github.com/cupy/cupy) for high performance training and inference.
For more details about Chainer, see the documents and resources listed above and join the community in Forum, Slack, and Twitter.

***Notice: As [announced](https://chainer.org/announcement/2019/12/05/released-v7.html), Chainer is under the maintenance phase and further development will be limited to bug-fixes and maintenance only.***

## Installation

*For more details, see the [installation guide](https://docs.chainer.org/en/stable/install.html).*

To install Chainer, use `pip`.

```sh
$ pip install chainer
```

To enable CUDA support, [CuPy](https://github.com/cupy/cupy) is required.
Refer to the [CuPy installation guide](https://docs-cupy.chainer.org/en/stable/install.html).


## Docker image

We are providing the official Docker image.
This image supports [nvidia-docker](https://github.com/NVIDIA/nvidia-docker).
Login to the environment with the following command, and run the Python interpreter to use Chainer with CUDA and cuDNN support.

```
$ nvidia-docker run -it chainer/chainer /bin/bash
```


## Contribution

See the [contribution guide](https://docs.chainer.org/en/stable/contribution.html).


## ChainerX

See the [ChainerX documentation](https://docs.chainer.org/en/stable/chainerx/index.html).


## License

MIT License (see `LICENSE` file).


## More information

- [Release notes](https://github.com/chainer/chainer/releases)

## References

Tokui, Seiya, et al. "Chainer: A Deep Learning Framework for Accelerating the Research Cycle." *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*. ACM, 2019.
[URL](https://dl.acm.org/citation.cfm?id=3330756) [BibTex](chainer2019_bibtex.txt)

Tokui, S., Oono, K., Hido, S. and Clayton, J.,
Chainer: a Next-Generation Open Source Framework for Deep Learning,
*Proceedings of Workshop on Machine Learning Systems(LearningSys) in
The Twenty-ninth Annual Conference on Neural Information Processing Systems (NIPS)*, (2015)
[URL](http://learningsys.org/papers/LearningSys_2015_paper_33.pdf), [BibTex](chainer_bibtex.txt)

Akiba, T., Fukuda, K. and Suzuki, S.,
ChainerMN: Scalable Distributed Deep Learning Framework,
*Proceedings of Workshop on ML Systems in
The Thirty-first Annual Conference on Neural Information Processing Systems (NIPS)*, (2017)
[URL](http://learningsys.org/nips17/assets/papers/paper_25.pdf), [BibTex](chainermn_bibtex.txt)




%package help
Summary:	Development documents and examples for chainer
Provides:	python3-chainer-doc
%description help
<div align="center"><img src="https://raw.githubusercontent.com/chainer/chainer/master/docs/image/chainer_red_h.png" width="400"/></div>

# Chainer: A deep learning framework

[![pypi](https://img.shields.io/pypi/v/chainer.svg)](https://pypi.python.org/pypi/chainer)
[![GitHub license](https://img.shields.io/github/license/chainer/chainer.svg)](https://github.com/chainer/chainer)
[![travis](https://img.shields.io/travis/chainer/chainer/master.svg)](https://travis-ci.org/chainer/chainer)
[![coveralls](https://img.shields.io/coveralls/chainer/chainer.svg)](https://coveralls.io/github/chainer/chainer)
[![Read the Docs](https://readthedocs.org/projects/chainer/badge/?version=stable)](https://docs.chainer.org/en/stable/?badge=stable)
[![Optuna](https://img.shields.io/badge/Optuna-integrated-blue)](https://optuna.org)

[**Website**](https://chainer.org/)
| [**Docs**](https://docs.chainer.org/en/stable/)
| [**Install Guide**](https://docs.chainer.org/en/stable/install.html)
| **Tutorials** ([ja](https://tutorials.chainer.org/ja/))
| **Examples** ([Official](examples), [External](https://github.com/chainer-community/awesome-chainer))
| [**Concepts**](https://docs.chainer.org/en/stable/guides/)
| [**ChainerX**](#chainerx)

**Forum** ([en](https://groups.google.com/forum/#!forum/chainer), [ja](https://groups.google.com/forum/#!forum/chainer-jp))
| **Slack invitation** ([en](https://bit.ly/go-chainer-slack), [ja](https://bit.ly/go-chainer-jp-slack))
| **Twitter** ([en](https://twitter.com/CuPy_Team), [ja](https://twitter.com/ChainerJP))

*Chainer* is a Python-based deep learning framework aiming at flexibility.
It provides automatic differentiation APIs based on the **define-by-run** approach (a.k.a. dynamic computational graphs) as well as object-oriented high-level APIs to build and train neural networks.
It also supports CUDA/cuDNN using [CuPy](https://github.com/cupy/cupy) for high performance training and inference.
For more details about Chainer, see the documents and resources listed above and join the community in Forum, Slack, and Twitter.

***Notice: As [announced](https://chainer.org/announcement/2019/12/05/released-v7.html), Chainer is under the maintenance phase and further development will be limited to bug-fixes and maintenance only.***

## Installation

*For more details, see the [installation guide](https://docs.chainer.org/en/stable/install.html).*

To install Chainer, use `pip`.

```sh
$ pip install chainer
```

To enable CUDA support, [CuPy](https://github.com/cupy/cupy) is required.
Refer to the [CuPy installation guide](https://docs-cupy.chainer.org/en/stable/install.html).


## Docker image

We are providing the official Docker image.
This image supports [nvidia-docker](https://github.com/NVIDIA/nvidia-docker).
Login to the environment with the following command, and run the Python interpreter to use Chainer with CUDA and cuDNN support.

```
$ nvidia-docker run -it chainer/chainer /bin/bash
```


## Contribution

See the [contribution guide](https://docs.chainer.org/en/stable/contribution.html).


## ChainerX

See the [ChainerX documentation](https://docs.chainer.org/en/stable/chainerx/index.html).


## License

MIT License (see `LICENSE` file).


## More information

- [Release notes](https://github.com/chainer/chainer/releases)

## References

Tokui, Seiya, et al. "Chainer: A Deep Learning Framework for Accelerating the Research Cycle." *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*. ACM, 2019.
[URL](https://dl.acm.org/citation.cfm?id=3330756) [BibTex](chainer2019_bibtex.txt)

Tokui, S., Oono, K., Hido, S. and Clayton, J.,
Chainer: a Next-Generation Open Source Framework for Deep Learning,
*Proceedings of Workshop on Machine Learning Systems(LearningSys) in
The Twenty-ninth Annual Conference on Neural Information Processing Systems (NIPS)*, (2015)
[URL](http://learningsys.org/papers/LearningSys_2015_paper_33.pdf), [BibTex](chainer_bibtex.txt)

Akiba, T., Fukuda, K. and Suzuki, S.,
ChainerMN: Scalable Distributed Deep Learning Framework,
*Proceedings of Workshop on ML Systems in
The Thirty-first Annual Conference on Neural Information Processing Systems (NIPS)*, (2017)
[URL](http://learningsys.org/nips17/assets/papers/paper_25.pdf), [BibTex](chainermn_bibtex.txt)




%prep
%autosetup -n chainer-7.8.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-chainer -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 7.8.1-1
- Package Spec generated