summaryrefslogtreecommitdiff
path: root/python-changepointdetectorevt.spec
diff options
context:
space:
mode:
Diffstat (limited to 'python-changepointdetectorevt.spec')
-rw-r--r--python-changepointdetectorevt.spec129
1 files changed, 129 insertions, 0 deletions
diff --git a/python-changepointdetectorevt.spec b/python-changepointdetectorevt.spec
new file mode 100644
index 0000000..d85acfd
--- /dev/null
+++ b/python-changepointdetectorevt.spec
@@ -0,0 +1,129 @@
+%global _empty_manifest_terminate_build 0
+Name: python-ChangePointDetectorEVT
+Version: 0.0.18
+Release: 1
+Summary: This module takes a date time series and returns: (a) the underlaying linear trend and (b) the times where there is a change in the trend
+License: MIT License
+URL: https://github.com/mhaupt63/ChangePointDetector
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/1a/fd/d1cbdda9b01a4cdc1f69df8936add62f6792076171ec8e7174e9fe77fd80/ChangePointDetectorEVT-0.0.18.tar.gz
+BuildArch: noarch
+
+
+%description
+ChangePointDetector
+
+This module returns change points in a date time series, using Kalman filters and EVT as described in https://www.robots.ox.ac.uk/~sjrob/Pubs/LeeRoberts_EVT.pdf
+
+1. from ChangePointDetector import ChangePointDetector
+2. Prepare your time series as data plus Panda dates
+3. Create the necessary Kalman representation by creating a "session" object by calling the ChangePoint class, e.g.:
+ Session=ChangePointDetector.ChangePointDetectorSession(data,dates).
+ - 'SeasonalityPeriods' is an optional input, e.g if your data is sequential months, 12 = calendar month seasonality
+ - 'ForecastPeriods' is another optional input, indicating how many periods to forecast. Default = 3
+4. Determine the changepoints by running the ChangePointDetectorFunction on your "session", e.g. Results=Session.ChangePointDetectorFunction()
+ This will return a "Results" object that contains the following:
+ - ChangePoints. This is a list of 0s and 1s the length of the data, where 1s represent changepoints
+ - Prediction. This is the Kalman smoothed actuals, plus a 3 period forecast. Note no forecast will be made if there is a changepoint in the last 3 dates
+ - PredictionVariance. Variance of the smoothed actuals and forecast
+ - ExtendedDates. These are the original dates plus 3 exta for the forecast (if a forecast has been made)
+ - Trend. This is the linear change factor
+ - TrendVariance. Variance of the trend
+
+
+
+%package -n python3-ChangePointDetectorEVT
+Summary: This module takes a date time series and returns: (a) the underlaying linear trend and (b) the times where there is a change in the trend
+Provides: python-ChangePointDetectorEVT
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-ChangePointDetectorEVT
+ChangePointDetector
+
+This module returns change points in a date time series, using Kalman filters and EVT as described in https://www.robots.ox.ac.uk/~sjrob/Pubs/LeeRoberts_EVT.pdf
+
+1. from ChangePointDetector import ChangePointDetector
+2. Prepare your time series as data plus Panda dates
+3. Create the necessary Kalman representation by creating a "session" object by calling the ChangePoint class, e.g.:
+ Session=ChangePointDetector.ChangePointDetectorSession(data,dates).
+ - 'SeasonalityPeriods' is an optional input, e.g if your data is sequential months, 12 = calendar month seasonality
+ - 'ForecastPeriods' is another optional input, indicating how many periods to forecast. Default = 3
+4. Determine the changepoints by running the ChangePointDetectorFunction on your "session", e.g. Results=Session.ChangePointDetectorFunction()
+ This will return a "Results" object that contains the following:
+ - ChangePoints. This is a list of 0s and 1s the length of the data, where 1s represent changepoints
+ - Prediction. This is the Kalman smoothed actuals, plus a 3 period forecast. Note no forecast will be made if there is a changepoint in the last 3 dates
+ - PredictionVariance. Variance of the smoothed actuals and forecast
+ - ExtendedDates. These are the original dates plus 3 exta for the forecast (if a forecast has been made)
+ - Trend. This is the linear change factor
+ - TrendVariance. Variance of the trend
+
+
+
+%package help
+Summary: Development documents and examples for ChangePointDetectorEVT
+Provides: python3-ChangePointDetectorEVT-doc
+%description help
+ChangePointDetector
+
+This module returns change points in a date time series, using Kalman filters and EVT as described in https://www.robots.ox.ac.uk/~sjrob/Pubs/LeeRoberts_EVT.pdf
+
+1. from ChangePointDetector import ChangePointDetector
+2. Prepare your time series as data plus Panda dates
+3. Create the necessary Kalman representation by creating a "session" object by calling the ChangePoint class, e.g.:
+ Session=ChangePointDetector.ChangePointDetectorSession(data,dates).
+ - 'SeasonalityPeriods' is an optional input, e.g if your data is sequential months, 12 = calendar month seasonality
+ - 'ForecastPeriods' is another optional input, indicating how many periods to forecast. Default = 3
+4. Determine the changepoints by running the ChangePointDetectorFunction on your "session", e.g. Results=Session.ChangePointDetectorFunction()
+ This will return a "Results" object that contains the following:
+ - ChangePoints. This is a list of 0s and 1s the length of the data, where 1s represent changepoints
+ - Prediction. This is the Kalman smoothed actuals, plus a 3 period forecast. Note no forecast will be made if there is a changepoint in the last 3 dates
+ - PredictionVariance. Variance of the smoothed actuals and forecast
+ - ExtendedDates. These are the original dates plus 3 exta for the forecast (if a forecast has been made)
+ - Trend. This is the linear change factor
+ - TrendVariance. Variance of the trend
+
+
+
+%prep
+%autosetup -n ChangePointDetectorEVT-0.0.18
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-ChangePointDetectorEVT -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Thu May 18 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.18-1
+- Package Spec generated