summaryrefslogtreecommitdiff
path: root/python-chatterbot.spec
blob: d5265393285de65fc857e987ca42826dcff581a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
%global _empty_manifest_terminate_build 0
Name:		python-ChatterBot
Version:	1.0.8
Release:	1
Summary:	ChatterBot is a machine learning, conversational dialog engine.
License:	BSD
URL:		https://github.com/gunthercox/ChatterBot
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/74/e8/942ac76e79434c605c30ab2ee3e3e421eaf5aa851d46d72eb780d0ff1bb5/ChatterBot-1.0.8.tar.gz
BuildArch:	noarch

Requires:	python3-mathparse
Requires:	python3-dateutil
Requires:	python3-sqlalchemy
Requires:	python3-pytz

%description
![ChatterBot: Machine learning in Python](https://i.imgur.com/b3SCmGT.png)

# ChatterBot

ChatterBot is a machine-learning based conversational dialog engine build in
Python which makes it possible to generate responses based on collections of
known conversations. The language independent design of ChatterBot allows it
to be trained to speak any language.

[![Package Version](https://img.shields.io/pypi/v/chatterbot.svg)](https://pypi.python.org/pypi/chatterbot/)
[![Python 3.6](https://img.shields.io/badge/python-3.6-blue.svg)](https://www.python.org/downloads/release/python-360/)
[![Django 2.0](https://img.shields.io/badge/Django-2.0-blue.svg)](https://docs.djangoproject.com/en/2.1/releases/2.0/)
[![Requirements Status](https://requires.io/github/gunthercox/ChatterBot/requirements.svg?branch=master)](https://requires.io/github/gunthercox/ChatterBot/requirements/?branch=master)
[![Build Status](https://travis-ci.org/gunthercox/ChatterBot.svg?branch=master)](https://travis-ci.org/gunthercox/ChatterBot)
[![Documentation Status](https://readthedocs.org/projects/chatterbot/badge/?version=stable)](http://chatterbot.readthedocs.io/en/stable/?badge=stable)
[![Coverage Status](https://img.shields.io/coveralls/gunthercox/ChatterBot.svg)](https://coveralls.io/r/gunthercox/ChatterBot)
[![Code Climate](https://codeclimate.com/github/gunthercox/ChatterBot/badges/gpa.svg)](https://codeclimate.com/github/gunthercox/ChatterBot)
[![Join the chat at https://gitter.im/chatterbot/Lobby](https://badges.gitter.im/chatterbot/Lobby.svg)](https://gitter.im/chatterbot/Lobby?utm_source=badge&utm_medium=badge&utm_content=badge)

An example of typical input would be something like this:

> **user:** Good morning! How are you doing?  
> **bot:**  I am doing very well, thank you for asking.  
> **user:** You're welcome.  
> **bot:** Do you like hats?  

## How it works

An untrained instance of ChatterBot starts off with no knowledge of how to communicate. Each time a user enters a statement, the library saves the text that they entered and the text that the statement was in response to. As ChatterBot receives more input the number of responses that it can reply and the accuracy of each response in relation to the input statement increase. The program selects the closest matching response by searching for the closest matching known statement that matches the input, it then returns the most likely response to that statement based on how frequently each response is issued by the people the bot communicates with.

## Installation

This package can be installed from [PyPi](https://pypi.python.org/pypi/ChatterBot) by running:

```
pip install chatterbot
```

## Basic Usage

```
from chatterbot import ChatBot
from chatterbot.trainers import ChatterBotCorpusTrainer

chatbot = ChatBot('Ron Obvious')

# Create a new trainer for the chatbot
trainer = ChatterBotCorpusTrainer(chatbot)

# Train the chatbot based on the english corpus
trainer.train("chatterbot.corpus.english")

# Get a response to an input statement
chatbot.get_response("Hello, how are you today?")
```

# Training data

ChatterBot comes with a data utility module that can be used to train chat bots.
At the moment there is training data for over a dozen languages in this module.
Contributions of additional training data or training data
in other languages would be greatly appreciated. Take a look at the data files
in the [chatterbot-corpus](https://github.com/gunthercox/chatterbot-corpus)
package if you are interested in contributing.

```
from chatterbot.trainers import ChatterBotCorpusTrainer

# Create a new trainer for the chatbot
trainer = ChatterBotCorpusTrainer(chatbot)

# Train based on the english corpus
trainer.train("chatterbot.corpus.english")

# Train based on english greetings corpus
trainer.train("chatterbot.corpus.english.greetings")

# Train based on the english conversations corpus
trainer.train("chatterbot.corpus.english.conversations")
```

**Corpus contributions are welcome! Please make a pull request.**

# [Documentation](https://chatterbot.readthedocs.io/)

View the [documentation](https://chatterbot.readthedocs.io/)
for ChatterBot on Read the Docs.

To build the documentation yourself using [Sphinx](http://www.sphinx-doc.org/), run:

```
sphinx-build -b html docs/ build/
```

# Examples

For examples, see the [examples](https://github.com/gunthercox/ChatterBot/tree/master/examples)
directory in this project's git repository.

There is also an example [Django project using ChatterBot](https://github.com/gunthercox/ChatterBot/tree/master/examples), as well as an example [Flask project using ChatterBot](https://github.com/chamkank/flask-chatterbot).

# History

See release notes for changes https://github.com/gunthercox/ChatterBot/releases

# Development pattern for contributors

1. [Create a fork](https://help.github.com/articles/fork-a-repo/) of
   the [main ChatterBot repository](https://github.com/gunthercox/ChatterBot) on GitHub.
2. Make your changes in a branch named something different from `master`, e.g. create
   a new branch `my-pull-request`.
3. [Create a pull request](https://help.github.com/articles/creating-a-pull-request/).
4. Please follow the [Python style guide for PEP-8](https://www.python.org/dev/peps/pep-0008/).
5. Use the projects [built-in automated testing](https://chatterbot.readthedocs.io/en/latest/testing.html).
   to help make sure that your contribution is free from errors.

# License

ChatterBot is licensed under the [BSD 3-clause license](https://opensource.org/licenses/BSD-3-Clause).




%package -n python3-ChatterBot
Summary:	ChatterBot is a machine learning, conversational dialog engine.
Provides:	python-ChatterBot
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-ChatterBot
![ChatterBot: Machine learning in Python](https://i.imgur.com/b3SCmGT.png)

# ChatterBot

ChatterBot is a machine-learning based conversational dialog engine build in
Python which makes it possible to generate responses based on collections of
known conversations. The language independent design of ChatterBot allows it
to be trained to speak any language.

[![Package Version](https://img.shields.io/pypi/v/chatterbot.svg)](https://pypi.python.org/pypi/chatterbot/)
[![Python 3.6](https://img.shields.io/badge/python-3.6-blue.svg)](https://www.python.org/downloads/release/python-360/)
[![Django 2.0](https://img.shields.io/badge/Django-2.0-blue.svg)](https://docs.djangoproject.com/en/2.1/releases/2.0/)
[![Requirements Status](https://requires.io/github/gunthercox/ChatterBot/requirements.svg?branch=master)](https://requires.io/github/gunthercox/ChatterBot/requirements/?branch=master)
[![Build Status](https://travis-ci.org/gunthercox/ChatterBot.svg?branch=master)](https://travis-ci.org/gunthercox/ChatterBot)
[![Documentation Status](https://readthedocs.org/projects/chatterbot/badge/?version=stable)](http://chatterbot.readthedocs.io/en/stable/?badge=stable)
[![Coverage Status](https://img.shields.io/coveralls/gunthercox/ChatterBot.svg)](https://coveralls.io/r/gunthercox/ChatterBot)
[![Code Climate](https://codeclimate.com/github/gunthercox/ChatterBot/badges/gpa.svg)](https://codeclimate.com/github/gunthercox/ChatterBot)
[![Join the chat at https://gitter.im/chatterbot/Lobby](https://badges.gitter.im/chatterbot/Lobby.svg)](https://gitter.im/chatterbot/Lobby?utm_source=badge&utm_medium=badge&utm_content=badge)

An example of typical input would be something like this:

> **user:** Good morning! How are you doing?  
> **bot:**  I am doing very well, thank you for asking.  
> **user:** You're welcome.  
> **bot:** Do you like hats?  

## How it works

An untrained instance of ChatterBot starts off with no knowledge of how to communicate. Each time a user enters a statement, the library saves the text that they entered and the text that the statement was in response to. As ChatterBot receives more input the number of responses that it can reply and the accuracy of each response in relation to the input statement increase. The program selects the closest matching response by searching for the closest matching known statement that matches the input, it then returns the most likely response to that statement based on how frequently each response is issued by the people the bot communicates with.

## Installation

This package can be installed from [PyPi](https://pypi.python.org/pypi/ChatterBot) by running:

```
pip install chatterbot
```

## Basic Usage

```
from chatterbot import ChatBot
from chatterbot.trainers import ChatterBotCorpusTrainer

chatbot = ChatBot('Ron Obvious')

# Create a new trainer for the chatbot
trainer = ChatterBotCorpusTrainer(chatbot)

# Train the chatbot based on the english corpus
trainer.train("chatterbot.corpus.english")

# Get a response to an input statement
chatbot.get_response("Hello, how are you today?")
```

# Training data

ChatterBot comes with a data utility module that can be used to train chat bots.
At the moment there is training data for over a dozen languages in this module.
Contributions of additional training data or training data
in other languages would be greatly appreciated. Take a look at the data files
in the [chatterbot-corpus](https://github.com/gunthercox/chatterbot-corpus)
package if you are interested in contributing.

```
from chatterbot.trainers import ChatterBotCorpusTrainer

# Create a new trainer for the chatbot
trainer = ChatterBotCorpusTrainer(chatbot)

# Train based on the english corpus
trainer.train("chatterbot.corpus.english")

# Train based on english greetings corpus
trainer.train("chatterbot.corpus.english.greetings")

# Train based on the english conversations corpus
trainer.train("chatterbot.corpus.english.conversations")
```

**Corpus contributions are welcome! Please make a pull request.**

# [Documentation](https://chatterbot.readthedocs.io/)

View the [documentation](https://chatterbot.readthedocs.io/)
for ChatterBot on Read the Docs.

To build the documentation yourself using [Sphinx](http://www.sphinx-doc.org/), run:

```
sphinx-build -b html docs/ build/
```

# Examples

For examples, see the [examples](https://github.com/gunthercox/ChatterBot/tree/master/examples)
directory in this project's git repository.

There is also an example [Django project using ChatterBot](https://github.com/gunthercox/ChatterBot/tree/master/examples), as well as an example [Flask project using ChatterBot](https://github.com/chamkank/flask-chatterbot).

# History

See release notes for changes https://github.com/gunthercox/ChatterBot/releases

# Development pattern for contributors

1. [Create a fork](https://help.github.com/articles/fork-a-repo/) of
   the [main ChatterBot repository](https://github.com/gunthercox/ChatterBot) on GitHub.
2. Make your changes in a branch named something different from `master`, e.g. create
   a new branch `my-pull-request`.
3. [Create a pull request](https://help.github.com/articles/creating-a-pull-request/).
4. Please follow the [Python style guide for PEP-8](https://www.python.org/dev/peps/pep-0008/).
5. Use the projects [built-in automated testing](https://chatterbot.readthedocs.io/en/latest/testing.html).
   to help make sure that your contribution is free from errors.

# License

ChatterBot is licensed under the [BSD 3-clause license](https://opensource.org/licenses/BSD-3-Clause).




%package help
Summary:	Development documents and examples for ChatterBot
Provides:	python3-ChatterBot-doc
%description help
![ChatterBot: Machine learning in Python](https://i.imgur.com/b3SCmGT.png)

# ChatterBot

ChatterBot is a machine-learning based conversational dialog engine build in
Python which makes it possible to generate responses based on collections of
known conversations. The language independent design of ChatterBot allows it
to be trained to speak any language.

[![Package Version](https://img.shields.io/pypi/v/chatterbot.svg)](https://pypi.python.org/pypi/chatterbot/)
[![Python 3.6](https://img.shields.io/badge/python-3.6-blue.svg)](https://www.python.org/downloads/release/python-360/)
[![Django 2.0](https://img.shields.io/badge/Django-2.0-blue.svg)](https://docs.djangoproject.com/en/2.1/releases/2.0/)
[![Requirements Status](https://requires.io/github/gunthercox/ChatterBot/requirements.svg?branch=master)](https://requires.io/github/gunthercox/ChatterBot/requirements/?branch=master)
[![Build Status](https://travis-ci.org/gunthercox/ChatterBot.svg?branch=master)](https://travis-ci.org/gunthercox/ChatterBot)
[![Documentation Status](https://readthedocs.org/projects/chatterbot/badge/?version=stable)](http://chatterbot.readthedocs.io/en/stable/?badge=stable)
[![Coverage Status](https://img.shields.io/coveralls/gunthercox/ChatterBot.svg)](https://coveralls.io/r/gunthercox/ChatterBot)
[![Code Climate](https://codeclimate.com/github/gunthercox/ChatterBot/badges/gpa.svg)](https://codeclimate.com/github/gunthercox/ChatterBot)
[![Join the chat at https://gitter.im/chatterbot/Lobby](https://badges.gitter.im/chatterbot/Lobby.svg)](https://gitter.im/chatterbot/Lobby?utm_source=badge&utm_medium=badge&utm_content=badge)

An example of typical input would be something like this:

> **user:** Good morning! How are you doing?  
> **bot:**  I am doing very well, thank you for asking.  
> **user:** You're welcome.  
> **bot:** Do you like hats?  

## How it works

An untrained instance of ChatterBot starts off with no knowledge of how to communicate. Each time a user enters a statement, the library saves the text that they entered and the text that the statement was in response to. As ChatterBot receives more input the number of responses that it can reply and the accuracy of each response in relation to the input statement increase. The program selects the closest matching response by searching for the closest matching known statement that matches the input, it then returns the most likely response to that statement based on how frequently each response is issued by the people the bot communicates with.

## Installation

This package can be installed from [PyPi](https://pypi.python.org/pypi/ChatterBot) by running:

```
pip install chatterbot
```

## Basic Usage

```
from chatterbot import ChatBot
from chatterbot.trainers import ChatterBotCorpusTrainer

chatbot = ChatBot('Ron Obvious')

# Create a new trainer for the chatbot
trainer = ChatterBotCorpusTrainer(chatbot)

# Train the chatbot based on the english corpus
trainer.train("chatterbot.corpus.english")

# Get a response to an input statement
chatbot.get_response("Hello, how are you today?")
```

# Training data

ChatterBot comes with a data utility module that can be used to train chat bots.
At the moment there is training data for over a dozen languages in this module.
Contributions of additional training data or training data
in other languages would be greatly appreciated. Take a look at the data files
in the [chatterbot-corpus](https://github.com/gunthercox/chatterbot-corpus)
package if you are interested in contributing.

```
from chatterbot.trainers import ChatterBotCorpusTrainer

# Create a new trainer for the chatbot
trainer = ChatterBotCorpusTrainer(chatbot)

# Train based on the english corpus
trainer.train("chatterbot.corpus.english")

# Train based on english greetings corpus
trainer.train("chatterbot.corpus.english.greetings")

# Train based on the english conversations corpus
trainer.train("chatterbot.corpus.english.conversations")
```

**Corpus contributions are welcome! Please make a pull request.**

# [Documentation](https://chatterbot.readthedocs.io/)

View the [documentation](https://chatterbot.readthedocs.io/)
for ChatterBot on Read the Docs.

To build the documentation yourself using [Sphinx](http://www.sphinx-doc.org/), run:

```
sphinx-build -b html docs/ build/
```

# Examples

For examples, see the [examples](https://github.com/gunthercox/ChatterBot/tree/master/examples)
directory in this project's git repository.

There is also an example [Django project using ChatterBot](https://github.com/gunthercox/ChatterBot/tree/master/examples), as well as an example [Flask project using ChatterBot](https://github.com/chamkank/flask-chatterbot).

# History

See release notes for changes https://github.com/gunthercox/ChatterBot/releases

# Development pattern for contributors

1. [Create a fork](https://help.github.com/articles/fork-a-repo/) of
   the [main ChatterBot repository](https://github.com/gunthercox/ChatterBot) on GitHub.
2. Make your changes in a branch named something different from `master`, e.g. create
   a new branch `my-pull-request`.
3. [Create a pull request](https://help.github.com/articles/creating-a-pull-request/).
4. Please follow the [Python style guide for PEP-8](https://www.python.org/dev/peps/pep-0008/).
5. Use the projects [built-in automated testing](https://chatterbot.readthedocs.io/en/latest/testing.html).
   to help make sure that your contribution is free from errors.

# License

ChatterBot is licensed under the [BSD 3-clause license](https://opensource.org/licenses/BSD-3-Clause).




%prep
%autosetup -n ChatterBot-1.0.8

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-ChatterBot -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.8-1
- Package Spec generated