1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
|
%global _empty_manifest_terminate_build 0
Name: python-checking
Version: 0.9.1
Release: 1
Summary: A small library for unit-testing
License: MIT License
URL: https://github.com/kotolex/checking
Source0: https://mirrors.aliyun.com/pypi/web/packages/29/e1/679f236f513ac33f52e5f4bd6e36f733e9313c5a858ec1a7d40731c47472/checking-0.9.1.tar.gz
BuildArch: noarch
%description
Test "__main__.check_cat" [Cat from 140288585437776] SUCCESS!
```
If you want to use a text file as a data source, you can use `DATA_FILE` helper function to skip the file handling boilerplate code:
```python
from checking import *
DATA_FILE('files/data.txt', name='provider') # Use the file located at <module folder>/files/data.txt
@test(data_provider='provider')
def try_prov(it):
print(it)
is_true(it)
```
The helper lazy-loads specified data file line by line.
Raises FileNotFoundError if the file is not found.
Also, you can transform all the lines before feeding them into the test,
for example delete trailing newlines at the end of each line:
```python
from checking import *
DATA_FILE('files/data.txt', name='provider', map_function=str.rstrip) # Feed each line through str.rstrip()
@test(data_provider='provider')
def try_prov(it):
is_true(it)
```
If you don't specify provider_name for the DATA_FILE helper, file_path will be used:
```python
from checking import *
DATA_FILE('data.txt') # Use text file located at the module folder. Note, that no provider_name is specified.
@test(data_provider='data.txt') # Use the specified file_name parameter for provider lookup
def try_prov(it):
is_true(it)
```
If your test suite uses a data provider more than once, you might want to avoid the IO overhead,
if this provider fetches the data from some external source (database, file system, http request etc.).
You can use the `cached` parameter to force the provider to fetch the data only once and store it into memory.
Please, be varied of the memory consumption, because the cache persists until the whole suite is done running.
Also, be careful when using the cache when running tests in parallel.
DATA_FILE helper can use this parameter too.
```python
from checking import *
DATA_FILE('data.csv', name='csv', cached=True) # Enable caching
@test(data_provider='csv') # First provider use -- data is fetched from the file and stored into memory
def check_one(it):
not_none(it)
@test(data_provider='csv') # Second use -- no file reads, cached data is used
def check_two(it):
not_none(it)
if __name__ == '__main__':
start(0)
```
If your provider is a simple one-liner (string, list comprehension, generator expression, etc.),
you can use the CONTAINER helper function to avoid full function definition boilerplate:
```python
from checking import *
CONTAINER([e for e in range(10)], name='range') # Provide data from a listcomps, set provider name to 'range'
@test(data_provider='range')
def try_container(it):
is_true(it in range(10))
```
'name' parameter is optional, 'container' is used by default,
but it's strongly recommended using a unique name:
```python
from checking import *
CONTAINER((e for e in range(10))) # Provide data from a genexps
@test(data_provider='container')
def try_container(it):
is_true(it in range(10))
```
**Important!** You must define DATA_FILE or CONTAINER providers at the module scope, not in the fixtures and tests.
### Test Parameters ###
You can manage the test execution mode by passing a number of parameters to the @test decorator:
**enabled** (bool) - if set to False, the test will be skipped, all other parameters are ignored. By default, set to True.
**name** (str) - the name of the test. Is bound to the decorated function name if not specified.
**description** (str) - test description. If absent, the test function docstring is used.
If both description and docstring are present, description takes precedence.
**data_provider** (str) - the name of the data provider to use with the test.
If specified, the test function must take one argument to be fed with the data from the provider.
Raises UnknownProviderName if no providers with the specified name found.
**retries** (int) - the number of times to run the failing test. If test does not fail, no more runs attempted. By default, set to 1.
**groups** (Tuple[str]) - a tuple of strings, representing the test group names a test is a part of.
All tests belong to some test group, the default group holds all tests from the current module and is named after the module.
Use this parameter to manage test execution groups.
**priority** (int) - test priority. The higher the value the later the test will be executed.
Use this parameter to fine tune test run order. By default, set to 0.
**timeout** (int) - amount of time to wait for the test to end.
If the time runs out, the thread running the test is terminated and the test is marked as "broken".
Use sparingly due to potential memory leaks.
**only_if** (Callable[None, bool]) - boolean predicate, which is evaluated before the test execution.
The test will be executed only if the predicate evaluates to True.
Use this parameter for conditional test execution e.g. run only if the OS is Linux, etc.
## Fixtures
Each test group or all test-suite can have preconditions and post-actions. For example, open DB connection before test starts and close it after that.
You can easily make it with before/after fixtures. The function that marked with before/after should be without arguments.
@before - run function before EACH test in group, by default group is current module, but you can specify it with parameter
@after - run function after EACH test in group, by default group is current module, but you can specify it with parameter.
This function will not be run if there is @before and it failed!
```python
@before(group_name='api')
def my_func():
do_some_precondition()
@after(group_name='api')
def another_func():
do_post_actions()
```
@before_group - function run once before running test in group, by default group is current module, but you can specify it with parameter.
@after_group - function run once after running all test in group, by default group is current module, but you can specify it with parameter.
This function will not be run if there is @before_group and it failed, except using parameter always_run = True
```python
@before_group(name='api')
def my_func():
do_some_precondition_for_whole_group()
@after_group(name='api', always_run =True)
def another_func():
do_post_actions_for_whole_group()
```
@before_suite - function runs once before any group at start of the test-suite
@after_suite - function run once after all groups, at the end of the test-suite.
This function will not be run if there is @before_suite, and it failed, except using parameter 'always_run = True'
```python
@before_suite
def my_func():
print('start suite!')
@after_suite(always_run=True)
def another_func():
print('will be printed, even if before_suite failed!')
```
## Mock, Double, Stub and Spy
For testing purposes you sometimes need to fake some behaviour or to isolate your application from any other classes/libraries etc.
If you need your test to use fake object, without doing any real calls, you can use mocks:
**1. Fake one of the builtin function.**
Let say you need to test function which is using standard input() inside.
But you cannot wait for real user input during the test, so fake it with mock object.
```python
def our_weird_function_with_input_inside():
text = input()
return text.upper()
@test
def mock_builtins_input():
with mock_builtins('input', lambda : 'test'): # Now input() just returns 'test', it does not wait for user input.
result_text = our_weird_function_with_input_inside()
equals('TEST', result_text)
```
More convenient way is to use mock_input or mock_print for simple and most common cases.
From code above we can test our_weird_function this way
```python
@test
def check_input():
with mock_input(['test']): # Now input() just returns 'test', it does not wait for user input.
result_text = our_weird_function_with_input_inside()
equals('TEST', result_text)
```
Now let's say we have simple function with print inside and need to test it:
```python
def my_print(x):
print(x)
@test
def check_print():
with mock_print([]) as result: # now print just collects all to list result
my_print(1)
my_print('1')
equals([(1,), ('1',)], result) # checks all args are in result list
```
and more complicated case, when our function works forever, printing all inputs, until gets 'exit':
```python
def use_both():
while True:
word = input('text>>>')
if word == 'exit':
break
print(word)
@test
def check_print_and_input():
# you can see inputs will get 'a','b' and 'exit' to break cycle, all args will
# be collected to result list
with mock_input(['a', 'b', 'exit']), mock_print([]) as result:
use_both()
equals([('a',), ('b',)], result)
```
**2. Fake function of the 3-d party library**
For working with other modules and libraries in test module, you need to import this module and to mock it function.
For example, you need to test function, which is using requests.get inside, but you do not want to make real http
request. Let it mock
some_module_to_test.py
```python
import requests
def func_with_get_inside(url):
response = requests.get(url)
return response.text
```
our_tests.py
```python
import requests # need to import it for mock!
from some_module_to_test import func_with_get_inside
@test
def mock_requests_get():
stub = Stub(text='test') # create simple stub, with attribute text equals to 'test'
with mock(requests, 'get', lambda x: stub): # Mock real requests with stub object
equals('test', func_with_get_inside('https://yandex.ru')) # Now no real requests be performed!
```
**3. Mock read/write to file**
If you need to mock open function, push data to read from file and gets back with write to file, you can use
mock_open context-manager
```python
def my_open():
# We read from one file, uppercase results and write to another file
with open('my_file.txt', encoding='utf-8') as f, open('another.txt', 'wt') as f2:
f2.write(f.readline().upper())
@test
def mock_open_both():
# Here we specify what we must "read from file" ('test') and where we want to get all writes(result)
with mock_open(on_read_text='test') as result:
my_open()
equals(['TEST'], result) # checks we get test uppercase
```
**4. Spy object**
Spy is the object which has all attributes of original, but spy not performed any action,
all methods return None (if not specified what to return). Therefore, spy log all actions and arguments.
It can be useful if your code has inner object, and you need to test what functions were called.
```python
def function_with_str_inside(value):
# Suppose we need to check upper was called here inside
return value.upper()
@test
def spy_for_str():
spy = Spy('it is a string') # Spy, which is like str, but it is not str!
function_with_str_inside(spy) # Send our spy instead a str
is_true(spy.upper.was_called()) # Verify upper was called
```
You can even specify what to return when some function of the spy will be called!
```python
def function_with_str_inside(value):
# Suppose we need to check upper was called here inside
return value.upper()
@test
def spy_with_return():
spy = Spy('string')
spy.upper.returns('test') # Tells what to return, when upper will be call
result = function_with_str_inside(spy)
is_true(spy.upper.was_called())
equals('test', result) # verify our spy returns 'test'
```
Spy object can be created without original inner object and can be call itself, it can be useful when you need
some dumb object to know it was called.
```python
@test
def check_spy():
spy = Spy() # Create "empty" spy
spy() # Call it
is_true(spy.was_called()) # Checks spy was called
```
**5. TestDouble object**
Test-Double object is like the Spy, but it saves original object behaviour, so its methods returns
real object methods results if not specified otherwise.
```python
@test
def check_double():
spy = TestDouble("string") # Create str double-object
equals(6, len(spy)) # Len returns 6 - the real length of original object ("string")
spy.len.returns(100) # Fake len result
equals(100, len(spy)) # Len now returns 100
```
**Important!** Both spy and TestDouble override **isinstance**, so they emulate type of the original object. It can be useful for
testing functions, which has isinstance check inside. For example:
```python
def function_that_checks_class(obj):
if isinstance(obj, str): # check for argument type (string)
return "OK"
return "Not OK"
@test
def isinstance_check():
spy = Spy("fake string") # fake the real string
result = function_that_checks_class(spy) # get "OK" here, cause function thinks it's a string, not Spy
equals("OK", result)
```
**6. Stub object**
Stub object is just a helper for testing, its purpose not to check or assert something, but to give data
and perform some simple action, when application under test need it. Unlike spy or double, Stub
is not remember calls, it just a simple replacement for some object with minimum or no logic inside.
Let's say we have a function which gets some object, take its attribute, calculates something and
return result. We wish to isolate our testing from real objects, just test important behaviour, besides
this data-object can be hard to create or complicated.
```python
from checking import *
# Our function to test, it get some object and use it attribute and method, but we just
# need to test how it works!
def function(some_object)->int:
initial_value = some_object.value
result = 2 + some_object.complicate_function()*initial_value # Some calculation we need to test
return result
@test
def check_with_stub():
stub = Stub(value=2) # Creates stub with attribute value=2
stub.complicate_function.returns(2) # Says, when complicate_function will be called returns 2
equals(6, function(stub)) # Asserts 6 == 2+(2*2)
```
Pay attention - when you look for some attribute in stub - it always has it! But it will be a wrapper to use with
expression like `stub.any_attribute.returns('test')`.
So, if you need to have some attribute (not method) on stub, you just use `stub.attr=10`, but for methods just use expression above.
### Function start() to runs test at module ###
You can execute all test at current module using function start(). For example:
```python
from checking import *
@test
def some_check():
equals(4, 2+2)
if __name__ == '__main__':
start(3) # Here we run our test function some_check
```
There are parameters to run your tests in different ways:
**suite_name** - name of the test-suite, to use in reports or in logs
**listener** - object of Listener class, test listener, is the way to work with test results and execution
DefaultListener is used by default. If set, then the verbose parameter is ignored (the one in the listener is used).
**verbose** is the report detail, 0 - briefly (only dots and 1 letter), 1 - detail, indicating only failed
tests, 2 - detail, indicating successful and fallen tests, 3 - detail and at the end, a list of fallen and broken ones
If verbose is not between 0 and 3, then 0 is accepted
Example (name and verbose)
```python
from checking import *
@test
def some_check():
equals(4, 2 + 2)
@test
def some_check_two():
equals(2, 1 + 1)
@test
def failed():
equals(5, 2 + 2) # Will fail
@test
def broken():
int('a') # Will be broken
if __name__ == '__main__':
start(suite_name='My Suite', verbose=0)
```
This code will gave output (mention dots and chars!):
```text
%package -n python3-checking
Summary: A small library for unit-testing
Provides: python-checking
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-checking
Test "__main__.check_cat" [Cat from 140288585437776] SUCCESS!
```
If you want to use a text file as a data source, you can use `DATA_FILE` helper function to skip the file handling boilerplate code:
```python
from checking import *
DATA_FILE('files/data.txt', name='provider') # Use the file located at <module folder>/files/data.txt
@test(data_provider='provider')
def try_prov(it):
print(it)
is_true(it)
```
The helper lazy-loads specified data file line by line.
Raises FileNotFoundError if the file is not found.
Also, you can transform all the lines before feeding them into the test,
for example delete trailing newlines at the end of each line:
```python
from checking import *
DATA_FILE('files/data.txt', name='provider', map_function=str.rstrip) # Feed each line through str.rstrip()
@test(data_provider='provider')
def try_prov(it):
is_true(it)
```
If you don't specify provider_name for the DATA_FILE helper, file_path will be used:
```python
from checking import *
DATA_FILE('data.txt') # Use text file located at the module folder. Note, that no provider_name is specified.
@test(data_provider='data.txt') # Use the specified file_name parameter for provider lookup
def try_prov(it):
is_true(it)
```
If your test suite uses a data provider more than once, you might want to avoid the IO overhead,
if this provider fetches the data from some external source (database, file system, http request etc.).
You can use the `cached` parameter to force the provider to fetch the data only once and store it into memory.
Please, be varied of the memory consumption, because the cache persists until the whole suite is done running.
Also, be careful when using the cache when running tests in parallel.
DATA_FILE helper can use this parameter too.
```python
from checking import *
DATA_FILE('data.csv', name='csv', cached=True) # Enable caching
@test(data_provider='csv') # First provider use -- data is fetched from the file and stored into memory
def check_one(it):
not_none(it)
@test(data_provider='csv') # Second use -- no file reads, cached data is used
def check_two(it):
not_none(it)
if __name__ == '__main__':
start(0)
```
If your provider is a simple one-liner (string, list comprehension, generator expression, etc.),
you can use the CONTAINER helper function to avoid full function definition boilerplate:
```python
from checking import *
CONTAINER([e for e in range(10)], name='range') # Provide data from a listcomps, set provider name to 'range'
@test(data_provider='range')
def try_container(it):
is_true(it in range(10))
```
'name' parameter is optional, 'container' is used by default,
but it's strongly recommended using a unique name:
```python
from checking import *
CONTAINER((e for e in range(10))) # Provide data from a genexps
@test(data_provider='container')
def try_container(it):
is_true(it in range(10))
```
**Important!** You must define DATA_FILE or CONTAINER providers at the module scope, not in the fixtures and tests.
### Test Parameters ###
You can manage the test execution mode by passing a number of parameters to the @test decorator:
**enabled** (bool) - if set to False, the test will be skipped, all other parameters are ignored. By default, set to True.
**name** (str) - the name of the test. Is bound to the decorated function name if not specified.
**description** (str) - test description. If absent, the test function docstring is used.
If both description and docstring are present, description takes precedence.
**data_provider** (str) - the name of the data provider to use with the test.
If specified, the test function must take one argument to be fed with the data from the provider.
Raises UnknownProviderName if no providers with the specified name found.
**retries** (int) - the number of times to run the failing test. If test does not fail, no more runs attempted. By default, set to 1.
**groups** (Tuple[str]) - a tuple of strings, representing the test group names a test is a part of.
All tests belong to some test group, the default group holds all tests from the current module and is named after the module.
Use this parameter to manage test execution groups.
**priority** (int) - test priority. The higher the value the later the test will be executed.
Use this parameter to fine tune test run order. By default, set to 0.
**timeout** (int) - amount of time to wait for the test to end.
If the time runs out, the thread running the test is terminated and the test is marked as "broken".
Use sparingly due to potential memory leaks.
**only_if** (Callable[None, bool]) - boolean predicate, which is evaluated before the test execution.
The test will be executed only if the predicate evaluates to True.
Use this parameter for conditional test execution e.g. run only if the OS is Linux, etc.
## Fixtures
Each test group or all test-suite can have preconditions and post-actions. For example, open DB connection before test starts and close it after that.
You can easily make it with before/after fixtures. The function that marked with before/after should be without arguments.
@before - run function before EACH test in group, by default group is current module, but you can specify it with parameter
@after - run function after EACH test in group, by default group is current module, but you can specify it with parameter.
This function will not be run if there is @before and it failed!
```python
@before(group_name='api')
def my_func():
do_some_precondition()
@after(group_name='api')
def another_func():
do_post_actions()
```
@before_group - function run once before running test in group, by default group is current module, but you can specify it with parameter.
@after_group - function run once after running all test in group, by default group is current module, but you can specify it with parameter.
This function will not be run if there is @before_group and it failed, except using parameter always_run = True
```python
@before_group(name='api')
def my_func():
do_some_precondition_for_whole_group()
@after_group(name='api', always_run =True)
def another_func():
do_post_actions_for_whole_group()
```
@before_suite - function runs once before any group at start of the test-suite
@after_suite - function run once after all groups, at the end of the test-suite.
This function will not be run if there is @before_suite, and it failed, except using parameter 'always_run = True'
```python
@before_suite
def my_func():
print('start suite!')
@after_suite(always_run=True)
def another_func():
print('will be printed, even if before_suite failed!')
```
## Mock, Double, Stub and Spy
For testing purposes you sometimes need to fake some behaviour or to isolate your application from any other classes/libraries etc.
If you need your test to use fake object, without doing any real calls, you can use mocks:
**1. Fake one of the builtin function.**
Let say you need to test function which is using standard input() inside.
But you cannot wait for real user input during the test, so fake it with mock object.
```python
def our_weird_function_with_input_inside():
text = input()
return text.upper()
@test
def mock_builtins_input():
with mock_builtins('input', lambda : 'test'): # Now input() just returns 'test', it does not wait for user input.
result_text = our_weird_function_with_input_inside()
equals('TEST', result_text)
```
More convenient way is to use mock_input or mock_print for simple and most common cases.
From code above we can test our_weird_function this way
```python
@test
def check_input():
with mock_input(['test']): # Now input() just returns 'test', it does not wait for user input.
result_text = our_weird_function_with_input_inside()
equals('TEST', result_text)
```
Now let's say we have simple function with print inside and need to test it:
```python
def my_print(x):
print(x)
@test
def check_print():
with mock_print([]) as result: # now print just collects all to list result
my_print(1)
my_print('1')
equals([(1,), ('1',)], result) # checks all args are in result list
```
and more complicated case, when our function works forever, printing all inputs, until gets 'exit':
```python
def use_both():
while True:
word = input('text>>>')
if word == 'exit':
break
print(word)
@test
def check_print_and_input():
# you can see inputs will get 'a','b' and 'exit' to break cycle, all args will
# be collected to result list
with mock_input(['a', 'b', 'exit']), mock_print([]) as result:
use_both()
equals([('a',), ('b',)], result)
```
**2. Fake function of the 3-d party library**
For working with other modules and libraries in test module, you need to import this module and to mock it function.
For example, you need to test function, which is using requests.get inside, but you do not want to make real http
request. Let it mock
some_module_to_test.py
```python
import requests
def func_with_get_inside(url):
response = requests.get(url)
return response.text
```
our_tests.py
```python
import requests # need to import it for mock!
from some_module_to_test import func_with_get_inside
@test
def mock_requests_get():
stub = Stub(text='test') # create simple stub, with attribute text equals to 'test'
with mock(requests, 'get', lambda x: stub): # Mock real requests with stub object
equals('test', func_with_get_inside('https://yandex.ru')) # Now no real requests be performed!
```
**3. Mock read/write to file**
If you need to mock open function, push data to read from file and gets back with write to file, you can use
mock_open context-manager
```python
def my_open():
# We read from one file, uppercase results and write to another file
with open('my_file.txt', encoding='utf-8') as f, open('another.txt', 'wt') as f2:
f2.write(f.readline().upper())
@test
def mock_open_both():
# Here we specify what we must "read from file" ('test') and where we want to get all writes(result)
with mock_open(on_read_text='test') as result:
my_open()
equals(['TEST'], result) # checks we get test uppercase
```
**4. Spy object**
Spy is the object which has all attributes of original, but spy not performed any action,
all methods return None (if not specified what to return). Therefore, spy log all actions and arguments.
It can be useful if your code has inner object, and you need to test what functions were called.
```python
def function_with_str_inside(value):
# Suppose we need to check upper was called here inside
return value.upper()
@test
def spy_for_str():
spy = Spy('it is a string') # Spy, which is like str, but it is not str!
function_with_str_inside(spy) # Send our spy instead a str
is_true(spy.upper.was_called()) # Verify upper was called
```
You can even specify what to return when some function of the spy will be called!
```python
def function_with_str_inside(value):
# Suppose we need to check upper was called here inside
return value.upper()
@test
def spy_with_return():
spy = Spy('string')
spy.upper.returns('test') # Tells what to return, when upper will be call
result = function_with_str_inside(spy)
is_true(spy.upper.was_called())
equals('test', result) # verify our spy returns 'test'
```
Spy object can be created without original inner object and can be call itself, it can be useful when you need
some dumb object to know it was called.
```python
@test
def check_spy():
spy = Spy() # Create "empty" spy
spy() # Call it
is_true(spy.was_called()) # Checks spy was called
```
**5. TestDouble object**
Test-Double object is like the Spy, but it saves original object behaviour, so its methods returns
real object methods results if not specified otherwise.
```python
@test
def check_double():
spy = TestDouble("string") # Create str double-object
equals(6, len(spy)) # Len returns 6 - the real length of original object ("string")
spy.len.returns(100) # Fake len result
equals(100, len(spy)) # Len now returns 100
```
**Important!** Both spy and TestDouble override **isinstance**, so they emulate type of the original object. It can be useful for
testing functions, which has isinstance check inside. For example:
```python
def function_that_checks_class(obj):
if isinstance(obj, str): # check for argument type (string)
return "OK"
return "Not OK"
@test
def isinstance_check():
spy = Spy("fake string") # fake the real string
result = function_that_checks_class(spy) # get "OK" here, cause function thinks it's a string, not Spy
equals("OK", result)
```
**6. Stub object**
Stub object is just a helper for testing, its purpose not to check or assert something, but to give data
and perform some simple action, when application under test need it. Unlike spy or double, Stub
is not remember calls, it just a simple replacement for some object with minimum or no logic inside.
Let's say we have a function which gets some object, take its attribute, calculates something and
return result. We wish to isolate our testing from real objects, just test important behaviour, besides
this data-object can be hard to create or complicated.
```python
from checking import *
# Our function to test, it get some object and use it attribute and method, but we just
# need to test how it works!
def function(some_object)->int:
initial_value = some_object.value
result = 2 + some_object.complicate_function()*initial_value # Some calculation we need to test
return result
@test
def check_with_stub():
stub = Stub(value=2) # Creates stub with attribute value=2
stub.complicate_function.returns(2) # Says, when complicate_function will be called returns 2
equals(6, function(stub)) # Asserts 6 == 2+(2*2)
```
Pay attention - when you look for some attribute in stub - it always has it! But it will be a wrapper to use with
expression like `stub.any_attribute.returns('test')`.
So, if you need to have some attribute (not method) on stub, you just use `stub.attr=10`, but for methods just use expression above.
### Function start() to runs test at module ###
You can execute all test at current module using function start(). For example:
```python
from checking import *
@test
def some_check():
equals(4, 2+2)
if __name__ == '__main__':
start(3) # Here we run our test function some_check
```
There are parameters to run your tests in different ways:
**suite_name** - name of the test-suite, to use in reports or in logs
**listener** - object of Listener class, test listener, is the way to work with test results and execution
DefaultListener is used by default. If set, then the verbose parameter is ignored (the one in the listener is used).
**verbose** is the report detail, 0 - briefly (only dots and 1 letter), 1 - detail, indicating only failed
tests, 2 - detail, indicating successful and fallen tests, 3 - detail and at the end, a list of fallen and broken ones
If verbose is not between 0 and 3, then 0 is accepted
Example (name and verbose)
```python
from checking import *
@test
def some_check():
equals(4, 2 + 2)
@test
def some_check_two():
equals(2, 1 + 1)
@test
def failed():
equals(5, 2 + 2) # Will fail
@test
def broken():
int('a') # Will be broken
if __name__ == '__main__':
start(suite_name='My Suite', verbose=0)
```
This code will gave output (mention dots and chars!):
```text
%package help
Summary: Development documents and examples for checking
Provides: python3-checking-doc
%description help
Test "__main__.check_cat" [Cat from 140288585437776] SUCCESS!
```
If you want to use a text file as a data source, you can use `DATA_FILE` helper function to skip the file handling boilerplate code:
```python
from checking import *
DATA_FILE('files/data.txt', name='provider') # Use the file located at <module folder>/files/data.txt
@test(data_provider='provider')
def try_prov(it):
print(it)
is_true(it)
```
The helper lazy-loads specified data file line by line.
Raises FileNotFoundError if the file is not found.
Also, you can transform all the lines before feeding them into the test,
for example delete trailing newlines at the end of each line:
```python
from checking import *
DATA_FILE('files/data.txt', name='provider', map_function=str.rstrip) # Feed each line through str.rstrip()
@test(data_provider='provider')
def try_prov(it):
is_true(it)
```
If you don't specify provider_name for the DATA_FILE helper, file_path will be used:
```python
from checking import *
DATA_FILE('data.txt') # Use text file located at the module folder. Note, that no provider_name is specified.
@test(data_provider='data.txt') # Use the specified file_name parameter for provider lookup
def try_prov(it):
is_true(it)
```
If your test suite uses a data provider more than once, you might want to avoid the IO overhead,
if this provider fetches the data from some external source (database, file system, http request etc.).
You can use the `cached` parameter to force the provider to fetch the data only once and store it into memory.
Please, be varied of the memory consumption, because the cache persists until the whole suite is done running.
Also, be careful when using the cache when running tests in parallel.
DATA_FILE helper can use this parameter too.
```python
from checking import *
DATA_FILE('data.csv', name='csv', cached=True) # Enable caching
@test(data_provider='csv') # First provider use -- data is fetched from the file and stored into memory
def check_one(it):
not_none(it)
@test(data_provider='csv') # Second use -- no file reads, cached data is used
def check_two(it):
not_none(it)
if __name__ == '__main__':
start(0)
```
If your provider is a simple one-liner (string, list comprehension, generator expression, etc.),
you can use the CONTAINER helper function to avoid full function definition boilerplate:
```python
from checking import *
CONTAINER([e for e in range(10)], name='range') # Provide data from a listcomps, set provider name to 'range'
@test(data_provider='range')
def try_container(it):
is_true(it in range(10))
```
'name' parameter is optional, 'container' is used by default,
but it's strongly recommended using a unique name:
```python
from checking import *
CONTAINER((e for e in range(10))) # Provide data from a genexps
@test(data_provider='container')
def try_container(it):
is_true(it in range(10))
```
**Important!** You must define DATA_FILE or CONTAINER providers at the module scope, not in the fixtures and tests.
### Test Parameters ###
You can manage the test execution mode by passing a number of parameters to the @test decorator:
**enabled** (bool) - if set to False, the test will be skipped, all other parameters are ignored. By default, set to True.
**name** (str) - the name of the test. Is bound to the decorated function name if not specified.
**description** (str) - test description. If absent, the test function docstring is used.
If both description and docstring are present, description takes precedence.
**data_provider** (str) - the name of the data provider to use with the test.
If specified, the test function must take one argument to be fed with the data from the provider.
Raises UnknownProviderName if no providers with the specified name found.
**retries** (int) - the number of times to run the failing test. If test does not fail, no more runs attempted. By default, set to 1.
**groups** (Tuple[str]) - a tuple of strings, representing the test group names a test is a part of.
All tests belong to some test group, the default group holds all tests from the current module and is named after the module.
Use this parameter to manage test execution groups.
**priority** (int) - test priority. The higher the value the later the test will be executed.
Use this parameter to fine tune test run order. By default, set to 0.
**timeout** (int) - amount of time to wait for the test to end.
If the time runs out, the thread running the test is terminated and the test is marked as "broken".
Use sparingly due to potential memory leaks.
**only_if** (Callable[None, bool]) - boolean predicate, which is evaluated before the test execution.
The test will be executed only if the predicate evaluates to True.
Use this parameter for conditional test execution e.g. run only if the OS is Linux, etc.
## Fixtures
Each test group or all test-suite can have preconditions and post-actions. For example, open DB connection before test starts and close it after that.
You can easily make it with before/after fixtures. The function that marked with before/after should be without arguments.
@before - run function before EACH test in group, by default group is current module, but you can specify it with parameter
@after - run function after EACH test in group, by default group is current module, but you can specify it with parameter.
This function will not be run if there is @before and it failed!
```python
@before(group_name='api')
def my_func():
do_some_precondition()
@after(group_name='api')
def another_func():
do_post_actions()
```
@before_group - function run once before running test in group, by default group is current module, but you can specify it with parameter.
@after_group - function run once after running all test in group, by default group is current module, but you can specify it with parameter.
This function will not be run if there is @before_group and it failed, except using parameter always_run = True
```python
@before_group(name='api')
def my_func():
do_some_precondition_for_whole_group()
@after_group(name='api', always_run =True)
def another_func():
do_post_actions_for_whole_group()
```
@before_suite - function runs once before any group at start of the test-suite
@after_suite - function run once after all groups, at the end of the test-suite.
This function will not be run if there is @before_suite, and it failed, except using parameter 'always_run = True'
```python
@before_suite
def my_func():
print('start suite!')
@after_suite(always_run=True)
def another_func():
print('will be printed, even if before_suite failed!')
```
## Mock, Double, Stub and Spy
For testing purposes you sometimes need to fake some behaviour or to isolate your application from any other classes/libraries etc.
If you need your test to use fake object, without doing any real calls, you can use mocks:
**1. Fake one of the builtin function.**
Let say you need to test function which is using standard input() inside.
But you cannot wait for real user input during the test, so fake it with mock object.
```python
def our_weird_function_with_input_inside():
text = input()
return text.upper()
@test
def mock_builtins_input():
with mock_builtins('input', lambda : 'test'): # Now input() just returns 'test', it does not wait for user input.
result_text = our_weird_function_with_input_inside()
equals('TEST', result_text)
```
More convenient way is to use mock_input or mock_print for simple and most common cases.
From code above we can test our_weird_function this way
```python
@test
def check_input():
with mock_input(['test']): # Now input() just returns 'test', it does not wait for user input.
result_text = our_weird_function_with_input_inside()
equals('TEST', result_text)
```
Now let's say we have simple function with print inside and need to test it:
```python
def my_print(x):
print(x)
@test
def check_print():
with mock_print([]) as result: # now print just collects all to list result
my_print(1)
my_print('1')
equals([(1,), ('1',)], result) # checks all args are in result list
```
and more complicated case, when our function works forever, printing all inputs, until gets 'exit':
```python
def use_both():
while True:
word = input('text>>>')
if word == 'exit':
break
print(word)
@test
def check_print_and_input():
# you can see inputs will get 'a','b' and 'exit' to break cycle, all args will
# be collected to result list
with mock_input(['a', 'b', 'exit']), mock_print([]) as result:
use_both()
equals([('a',), ('b',)], result)
```
**2. Fake function of the 3-d party library**
For working with other modules and libraries in test module, you need to import this module and to mock it function.
For example, you need to test function, which is using requests.get inside, but you do not want to make real http
request. Let it mock
some_module_to_test.py
```python
import requests
def func_with_get_inside(url):
response = requests.get(url)
return response.text
```
our_tests.py
```python
import requests # need to import it for mock!
from some_module_to_test import func_with_get_inside
@test
def mock_requests_get():
stub = Stub(text='test') # create simple stub, with attribute text equals to 'test'
with mock(requests, 'get', lambda x: stub): # Mock real requests with stub object
equals('test', func_with_get_inside('https://yandex.ru')) # Now no real requests be performed!
```
**3. Mock read/write to file**
If you need to mock open function, push data to read from file and gets back with write to file, you can use
mock_open context-manager
```python
def my_open():
# We read from one file, uppercase results and write to another file
with open('my_file.txt', encoding='utf-8') as f, open('another.txt', 'wt') as f2:
f2.write(f.readline().upper())
@test
def mock_open_both():
# Here we specify what we must "read from file" ('test') and where we want to get all writes(result)
with mock_open(on_read_text='test') as result:
my_open()
equals(['TEST'], result) # checks we get test uppercase
```
**4. Spy object**
Spy is the object which has all attributes of original, but spy not performed any action,
all methods return None (if not specified what to return). Therefore, spy log all actions and arguments.
It can be useful if your code has inner object, and you need to test what functions were called.
```python
def function_with_str_inside(value):
# Suppose we need to check upper was called here inside
return value.upper()
@test
def spy_for_str():
spy = Spy('it is a string') # Spy, which is like str, but it is not str!
function_with_str_inside(spy) # Send our spy instead a str
is_true(spy.upper.was_called()) # Verify upper was called
```
You can even specify what to return when some function of the spy will be called!
```python
def function_with_str_inside(value):
# Suppose we need to check upper was called here inside
return value.upper()
@test
def spy_with_return():
spy = Spy('string')
spy.upper.returns('test') # Tells what to return, when upper will be call
result = function_with_str_inside(spy)
is_true(spy.upper.was_called())
equals('test', result) # verify our spy returns 'test'
```
Spy object can be created without original inner object and can be call itself, it can be useful when you need
some dumb object to know it was called.
```python
@test
def check_spy():
spy = Spy() # Create "empty" spy
spy() # Call it
is_true(spy.was_called()) # Checks spy was called
```
**5. TestDouble object**
Test-Double object is like the Spy, but it saves original object behaviour, so its methods returns
real object methods results if not specified otherwise.
```python
@test
def check_double():
spy = TestDouble("string") # Create str double-object
equals(6, len(spy)) # Len returns 6 - the real length of original object ("string")
spy.len.returns(100) # Fake len result
equals(100, len(spy)) # Len now returns 100
```
**Important!** Both spy and TestDouble override **isinstance**, so they emulate type of the original object. It can be useful for
testing functions, which has isinstance check inside. For example:
```python
def function_that_checks_class(obj):
if isinstance(obj, str): # check for argument type (string)
return "OK"
return "Not OK"
@test
def isinstance_check():
spy = Spy("fake string") # fake the real string
result = function_that_checks_class(spy) # get "OK" here, cause function thinks it's a string, not Spy
equals("OK", result)
```
**6. Stub object**
Stub object is just a helper for testing, its purpose not to check or assert something, but to give data
and perform some simple action, when application under test need it. Unlike spy or double, Stub
is not remember calls, it just a simple replacement for some object with minimum or no logic inside.
Let's say we have a function which gets some object, take its attribute, calculates something and
return result. We wish to isolate our testing from real objects, just test important behaviour, besides
this data-object can be hard to create or complicated.
```python
from checking import *
# Our function to test, it get some object and use it attribute and method, but we just
# need to test how it works!
def function(some_object)->int:
initial_value = some_object.value
result = 2 + some_object.complicate_function()*initial_value # Some calculation we need to test
return result
@test
def check_with_stub():
stub = Stub(value=2) # Creates stub with attribute value=2
stub.complicate_function.returns(2) # Says, when complicate_function will be called returns 2
equals(6, function(stub)) # Asserts 6 == 2+(2*2)
```
Pay attention - when you look for some attribute in stub - it always has it! But it will be a wrapper to use with
expression like `stub.any_attribute.returns('test')`.
So, if you need to have some attribute (not method) on stub, you just use `stub.attr=10`, but for methods just use expression above.
### Function start() to runs test at module ###
You can execute all test at current module using function start(). For example:
```python
from checking import *
@test
def some_check():
equals(4, 2+2)
if __name__ == '__main__':
start(3) # Here we run our test function some_check
```
There are parameters to run your tests in different ways:
**suite_name** - name of the test-suite, to use in reports or in logs
**listener** - object of Listener class, test listener, is the way to work with test results and execution
DefaultListener is used by default. If set, then the verbose parameter is ignored (the one in the listener is used).
**verbose** is the report detail, 0 - briefly (only dots and 1 letter), 1 - detail, indicating only failed
tests, 2 - detail, indicating successful and fallen tests, 3 - detail and at the end, a list of fallen and broken ones
If verbose is not between 0 and 3, then 0 is accepted
Example (name and verbose)
```python
from checking import *
@test
def some_check():
equals(4, 2 + 2)
@test
def some_check_two():
equals(2, 1 + 1)
@test
def failed():
equals(5, 2 + 2) # Will fail
@test
def broken():
int('a') # Will be broken
if __name__ == '__main__':
start(suite_name='My Suite', verbose=0)
```
This code will gave output (mention dots and chars!):
```text
%prep
%autosetup -n checking-0.9.1
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-checking -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 0.9.1-1
- Package Spec generated
|