1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
|
%global _empty_manifest_terminate_build 0
Name: python-chembl-downloader
Version: 0.4.2
Release: 1
Summary: Reproducibly download, open, parse, and query ChEMBL
License: MIT
URL: https://github.com/cthoyt/chembl_downloader
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/c6/70/5f1b39298e2a1ee4f64f362967d125e254ff7b283a97a0352168c42cca54/chembl_downloader-0.4.2.tar.gz
BuildArch: noarch
Requires: python3-click
Requires: python3-more-click
Requires: python3-pystow
Requires: python3-tqdm
Requires: python3-sphinx
Requires: python3-sphinx-rtd-theme
Requires: python3-sphinx-click
Requires: python3-sphinx-autodoc-typehints
Requires: python3-sphinx-automodapi
Requires: python3-pandas
Requires: python3-rdkit-pypi
Requires: python3-pytest
Requires: python3-coverage
%description
<h1 align="center">
chembl_downloader
</h1>
<p align="center">
<a href="https://pypi.org/project/chembl_downloader">
<img alt="PyPI" src="https://img.shields.io/pypi/v/chembl_downloader" />
</a>
<a href="https://pypi.org/project/chembl_downloader">
<img alt="PyPI - Python Version" src="https://img.shields.io/pypi/pyversions/chembl_downloader" />
</a>
<a href="https://github.com/cthoyt/chembl_downloader/blob/main/LICENSE">
<img alt="PyPI - License" src="https://img.shields.io/pypi/l/chembl_downloader" />
</a>
<a href="https://zenodo.org/badge/latestdoi/390113187">
<img src="https://zenodo.org/badge/390113187.svg" alt="DOI" />
</a>
<a href="https://github.com/psf/black">
<img src="https://img.shields.io/badge/code%20style-black-000000.svg" alt="Code style: black" />
</a>
<a href='https://chembl-downloader.readthedocs.io/en/latest/?badge=latest'>
<img src='https://readthedocs.org/projects/chembl-downloader/badge/?version=latest' alt='Documentation Status' />
</a>
</p>
Don't worry about downloading/extracting ChEMBL or versioning - just use ``chembl_downloader`` to write code that knows
how to download it and use it automatically.
Install with:
```bash
$ pip install chembl-downloader
```
Full technical documentation can be found on
[ReadTheDocs](https://chembl-downloader.readthedocs.io). Tutorials can be found
in Jupyter notebooks in the [notebooks/](notebooks/) directory of the
repository.
## Database Usage
### Download A Specific Version
```python
import chembl_downloader
path = chembl_downloader.download_extract_sqlite(version='28')
```
After it's been downloaded and extracted once, it's smart and does not need to download again. It gets stored
using [`pystow`](https://github.com/cthoyt/pystow) automatically in the `~/.data/chembl`
directory.
We'd like to implement something such that it could load directly into SQLite from the archive, but it appears this is
a [paid feature](https://sqlite.org/purchase/zipvfs).
### Download the Latest Version
You can modify the previous code slightly by omitting the `version` keyword
argument to automatically find the latest version of ChEMBL:
```python
import chembl_downloader
path = chembl_downloader.download_extract_sqlite()
```
The `version` keyword argument is available for all functions in this package (e.g., including
`connect()`, `cursor()`, and `query()`), but will be omitted below for brevity.
### Automate Connection
Inside the archive is a single SQLite database file. Normally, people manually untar this folder then do something with
the resulting file. Don't do this, it's not reproducible!
Instead, the file can be downloaded and a connection can be opened automatically with:
```python
import chembl_downloader
with chembl_downloader.connect() as conn:
with conn.cursor() as cursor:
cursor.execute(...) # run your query string
rows = cursor.fetchall() # get your results
```
The `cursor()` function provides a convenient wrapper around this operation:
```python
import chembl_downloader
with chembl_downloader.cursor() as cursor:
cursor.execute(...) # run your query string
rows = cursor.fetchall() # get your results
```
### Run a query and get a pandas DataFrame
The most powerful function is `query()` which builds on the previous `connect()` function in combination
with [`pandas.read_sql`](https://pandas.pydata.org/docs/reference/api/pandas.read_sql.html)
to make a query and load the results into a pandas DataFrame for any downstream use.
```python
import chembl_downloader
sql = """
SELECT
MOLECULE_DICTIONARY.chembl_id,
MOLECULE_DICTIONARY.pref_name
FROM MOLECULE_DICTIONARY
JOIN COMPOUND_STRUCTURES ON MOLECULE_DICTIONARY.molregno == COMPOUND_STRUCTURES.molregno
WHERE molecule_dictionary.pref_name IS NOT NULL
LIMIT 5
"""
df = chembl_downloader.query(sql)
df.to_csv(..., sep='\t', index=False)
```
Suggestion 1: use `pystow` to make a reproducible file path that's portable to other people's machines
(e.g., it doesn't have your username in the path).
Suggestion 2: RDKit is now pip-installable with `pip install rdkit-pypi`, which means most users don't have to muck
around with complicated conda environments and configurations. One of the powerful but understated tools in RDKit is
the [rdkit.Chem.PandasTools](https://rdkit.org/docs/source/rdkit.Chem.PandasTools.html)
module.
### Access an RDKit supplier over entries in the SDF dump
This example is a bit more fit-for-purpose than the last two. The `supplier()` function makes sure that the latest SDF
dump is downloaded and loads it from the gzip file into a `rdkit.Chem.ForwardSDMolSupplier`
using a context manager to make sure the file doesn't get closed until after parsing is done. Like the previous
examples, it can also explicitly take a `version`.
```python
from rdkit import Chem
import chembl_downloader
with chembl_downloader.supplier() as suppl:
data = []
for i, mol in enumerate(suppl):
if mol is None or mol.GetNumAtoms() > 50:
continue
fp = Chem.PatternFingerprint(mol, fpSize=1024, tautomerFingerprints=True)
smi = Chem.MolToSmiles(mol)
data.append((smi, fp))
```
This example was adapted from Greg Landrum's RDKit blog post
on [generalized substructure search](https://greglandrum.github.io/rdkit-blog/tutorial/substructure/2021/08/03/generalized-substructure-search.html).
## SDF Usage
### Get an RDKit substructure library
Building on the `supplier()` function, the `get_substructure_library()`
makes the preparation of a [substructure library](https://www.rdkit.org/docs/cppapi/classRDKit_1_1SubstructLibrary.html)
automated and reproducible. Additionally, it caches the results of the build,
which takes on the order of tens of minutes, only has to be done once and future
loading from a pickle object takes on the order of seconds.
The implementation was inspired by Greg Landrum's RDKit blog post,
[Some new features in the SubstructLibrary](https://greglandrum.github.io/rdkit-blog/tutorial/substructure/2021/12/20/substructlibrary-search-order.html).
The following example shows how it can be used to accomplish some of the first
tasks presented in the post:
```python
from rdkit import Chem
import chembl_downloader
library = chembl_downloader.get_substructure_library()
query = Chem.MolFromSmarts('[O,N]=C-c:1:c:c:n:c:c:1')
matches = library.GetMatches(query)
```
## Morgan Fingerprints Usage
### Get the Morgan Fingerprint file
ChEMBL makes a file containing pre-computed 2048 bit radius 2 morgan
fingerprints for each molecule available. It can be downloaded using:
```python
import chembl_downloader
path = chembl_downloader.download_fps()
```
The `version` and other keyword arguments are also valid for this function.
### Load fingerprints with [`chemfp`](https://chemfp.com/)
The following wraps the `download_fps` function with `chemfp`'s fingerprint
loader:
```python
import chembl_downloader
arena = chembl_downloader.chemfp_load_fps()
```
The `version` and other keyword arguments are also valid for this function.
More information on working with the `arena` object can be found
[here](https://chemfp.readthedocs.io/en/latest/using-api.html#working-with-a-fingerprintarena).
## Extras
### Store in a Different Place
If you want to store the data elsewhere using `pystow` (e.g., in [`pyobo`](https://github.com/pyobo/pyobo)
I also keep a copy of this file), you can use the `prefix` argument.
```python
import chembl_downloader
# It gets downloaded/extracted to
# ~/.data/pyobo/raw/chembl/29/chembl_29/chembl_29_sqlite/chembl_29.db
path = chembl_downloader.download_extract_sqlite(prefix=['pyobo', 'raw', 'chembl'])
```
See the `pystow` [documentation](https://github.com/cthoyt/pystow#%EF%B8%8F-configuration) on configuring the storage
location further.
The `prefix` keyword argument is available for all functions in this package (e.g., including
`connect()`, `cursor()`, and `query()`).
### Download via CLI
After installing, run the following CLI command to ensure it and send the path to stdout
```bash
$ chembl_downloader
```
Use `--test` to show two example queries
```bash
$ chembl_downloader --test
```
## Contributing
Please read the contribution guidelines in [CONTRIBUTING.md](.github/CONTRIBUTING.md).
If you'd like to contribute, there's a submodule called `chembl_downloader.queries`
where you can add a useful SQL queries along with a description of what it does for easy
importing and reuse.
## Statistics and Compatibility
`chembl-downloader` is compatible with all versions of ChEMBL. However, some files are
not available for all versions. For example, the SQLite version of the database was first
added in release 21 (2015-02-12).
| ChEMBL Version | Release Date |
|------------------|----------------|
| 31 | 2022-07-12 |
| 30 | 2022-02-22 |
| 29 | 2021-07-01 |
| 28 | 2021-01-15 |
| 27 | 2020-05-18 |
| 26 | 2020-02-14 |
| 25 | 2019-02-01 |
| 24_1 | 2018-05-01 |
| 24 | |
| 23 | 2017-05-18 |
| 22_1 | 2016-11-17 |
| 22 | |
| 21 | 2015-02-12 |
| 20 | 2015-02-03 |
| 19 | 2014-07-2333 |
| 18 | 2014-04-02 |
| 17 | 2013-09-16 |
| 16 | 2013-055555-15 |
| 15 | 2013-01-30 |
| 14 | 2012 -07-18 |
| 13 | 2012-02-29 |
| 12 | 2011-11-30 |
| 11 | 2011-06-07 |
| 10 | 2011-06-07 |
| 09 | 2011-01-04 |
| 08 | 2010-11-05 |
| 07 | 2010-09-03 |
| 06 | 2010-09-03 |
| 05 | 2010-06-07 |
| 04 | 2010-05-26 |
| 03 | 2010-04-30 |
| 02 | 2009-12-07 |
| 01 | 2009-10-28 |
%package -n python3-chembl-downloader
Summary: Reproducibly download, open, parse, and query ChEMBL
Provides: python-chembl-downloader
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-chembl-downloader
<h1 align="center">
chembl_downloader
</h1>
<p align="center">
<a href="https://pypi.org/project/chembl_downloader">
<img alt="PyPI" src="https://img.shields.io/pypi/v/chembl_downloader" />
</a>
<a href="https://pypi.org/project/chembl_downloader">
<img alt="PyPI - Python Version" src="https://img.shields.io/pypi/pyversions/chembl_downloader" />
</a>
<a href="https://github.com/cthoyt/chembl_downloader/blob/main/LICENSE">
<img alt="PyPI - License" src="https://img.shields.io/pypi/l/chembl_downloader" />
</a>
<a href="https://zenodo.org/badge/latestdoi/390113187">
<img src="https://zenodo.org/badge/390113187.svg" alt="DOI" />
</a>
<a href="https://github.com/psf/black">
<img src="https://img.shields.io/badge/code%20style-black-000000.svg" alt="Code style: black" />
</a>
<a href='https://chembl-downloader.readthedocs.io/en/latest/?badge=latest'>
<img src='https://readthedocs.org/projects/chembl-downloader/badge/?version=latest' alt='Documentation Status' />
</a>
</p>
Don't worry about downloading/extracting ChEMBL or versioning - just use ``chembl_downloader`` to write code that knows
how to download it and use it automatically.
Install with:
```bash
$ pip install chembl-downloader
```
Full technical documentation can be found on
[ReadTheDocs](https://chembl-downloader.readthedocs.io). Tutorials can be found
in Jupyter notebooks in the [notebooks/](notebooks/) directory of the
repository.
## Database Usage
### Download A Specific Version
```python
import chembl_downloader
path = chembl_downloader.download_extract_sqlite(version='28')
```
After it's been downloaded and extracted once, it's smart and does not need to download again. It gets stored
using [`pystow`](https://github.com/cthoyt/pystow) automatically in the `~/.data/chembl`
directory.
We'd like to implement something such that it could load directly into SQLite from the archive, but it appears this is
a [paid feature](https://sqlite.org/purchase/zipvfs).
### Download the Latest Version
You can modify the previous code slightly by omitting the `version` keyword
argument to automatically find the latest version of ChEMBL:
```python
import chembl_downloader
path = chembl_downloader.download_extract_sqlite()
```
The `version` keyword argument is available for all functions in this package (e.g., including
`connect()`, `cursor()`, and `query()`), but will be omitted below for brevity.
### Automate Connection
Inside the archive is a single SQLite database file. Normally, people manually untar this folder then do something with
the resulting file. Don't do this, it's not reproducible!
Instead, the file can be downloaded and a connection can be opened automatically with:
```python
import chembl_downloader
with chembl_downloader.connect() as conn:
with conn.cursor() as cursor:
cursor.execute(...) # run your query string
rows = cursor.fetchall() # get your results
```
The `cursor()` function provides a convenient wrapper around this operation:
```python
import chembl_downloader
with chembl_downloader.cursor() as cursor:
cursor.execute(...) # run your query string
rows = cursor.fetchall() # get your results
```
### Run a query and get a pandas DataFrame
The most powerful function is `query()` which builds on the previous `connect()` function in combination
with [`pandas.read_sql`](https://pandas.pydata.org/docs/reference/api/pandas.read_sql.html)
to make a query and load the results into a pandas DataFrame for any downstream use.
```python
import chembl_downloader
sql = """
SELECT
MOLECULE_DICTIONARY.chembl_id,
MOLECULE_DICTIONARY.pref_name
FROM MOLECULE_DICTIONARY
JOIN COMPOUND_STRUCTURES ON MOLECULE_DICTIONARY.molregno == COMPOUND_STRUCTURES.molregno
WHERE molecule_dictionary.pref_name IS NOT NULL
LIMIT 5
"""
df = chembl_downloader.query(sql)
df.to_csv(..., sep='\t', index=False)
```
Suggestion 1: use `pystow` to make a reproducible file path that's portable to other people's machines
(e.g., it doesn't have your username in the path).
Suggestion 2: RDKit is now pip-installable with `pip install rdkit-pypi`, which means most users don't have to muck
around with complicated conda environments and configurations. One of the powerful but understated tools in RDKit is
the [rdkit.Chem.PandasTools](https://rdkit.org/docs/source/rdkit.Chem.PandasTools.html)
module.
### Access an RDKit supplier over entries in the SDF dump
This example is a bit more fit-for-purpose than the last two. The `supplier()` function makes sure that the latest SDF
dump is downloaded and loads it from the gzip file into a `rdkit.Chem.ForwardSDMolSupplier`
using a context manager to make sure the file doesn't get closed until after parsing is done. Like the previous
examples, it can also explicitly take a `version`.
```python
from rdkit import Chem
import chembl_downloader
with chembl_downloader.supplier() as suppl:
data = []
for i, mol in enumerate(suppl):
if mol is None or mol.GetNumAtoms() > 50:
continue
fp = Chem.PatternFingerprint(mol, fpSize=1024, tautomerFingerprints=True)
smi = Chem.MolToSmiles(mol)
data.append((smi, fp))
```
This example was adapted from Greg Landrum's RDKit blog post
on [generalized substructure search](https://greglandrum.github.io/rdkit-blog/tutorial/substructure/2021/08/03/generalized-substructure-search.html).
## SDF Usage
### Get an RDKit substructure library
Building on the `supplier()` function, the `get_substructure_library()`
makes the preparation of a [substructure library](https://www.rdkit.org/docs/cppapi/classRDKit_1_1SubstructLibrary.html)
automated and reproducible. Additionally, it caches the results of the build,
which takes on the order of tens of minutes, only has to be done once and future
loading from a pickle object takes on the order of seconds.
The implementation was inspired by Greg Landrum's RDKit blog post,
[Some new features in the SubstructLibrary](https://greglandrum.github.io/rdkit-blog/tutorial/substructure/2021/12/20/substructlibrary-search-order.html).
The following example shows how it can be used to accomplish some of the first
tasks presented in the post:
```python
from rdkit import Chem
import chembl_downloader
library = chembl_downloader.get_substructure_library()
query = Chem.MolFromSmarts('[O,N]=C-c:1:c:c:n:c:c:1')
matches = library.GetMatches(query)
```
## Morgan Fingerprints Usage
### Get the Morgan Fingerprint file
ChEMBL makes a file containing pre-computed 2048 bit radius 2 morgan
fingerprints for each molecule available. It can be downloaded using:
```python
import chembl_downloader
path = chembl_downloader.download_fps()
```
The `version` and other keyword arguments are also valid for this function.
### Load fingerprints with [`chemfp`](https://chemfp.com/)
The following wraps the `download_fps` function with `chemfp`'s fingerprint
loader:
```python
import chembl_downloader
arena = chembl_downloader.chemfp_load_fps()
```
The `version` and other keyword arguments are also valid for this function.
More information on working with the `arena` object can be found
[here](https://chemfp.readthedocs.io/en/latest/using-api.html#working-with-a-fingerprintarena).
## Extras
### Store in a Different Place
If you want to store the data elsewhere using `pystow` (e.g., in [`pyobo`](https://github.com/pyobo/pyobo)
I also keep a copy of this file), you can use the `prefix` argument.
```python
import chembl_downloader
# It gets downloaded/extracted to
# ~/.data/pyobo/raw/chembl/29/chembl_29/chembl_29_sqlite/chembl_29.db
path = chembl_downloader.download_extract_sqlite(prefix=['pyobo', 'raw', 'chembl'])
```
See the `pystow` [documentation](https://github.com/cthoyt/pystow#%EF%B8%8F-configuration) on configuring the storage
location further.
The `prefix` keyword argument is available for all functions in this package (e.g., including
`connect()`, `cursor()`, and `query()`).
### Download via CLI
After installing, run the following CLI command to ensure it and send the path to stdout
```bash
$ chembl_downloader
```
Use `--test` to show two example queries
```bash
$ chembl_downloader --test
```
## Contributing
Please read the contribution guidelines in [CONTRIBUTING.md](.github/CONTRIBUTING.md).
If you'd like to contribute, there's a submodule called `chembl_downloader.queries`
where you can add a useful SQL queries along with a description of what it does for easy
importing and reuse.
## Statistics and Compatibility
`chembl-downloader` is compatible with all versions of ChEMBL. However, some files are
not available for all versions. For example, the SQLite version of the database was first
added in release 21 (2015-02-12).
| ChEMBL Version | Release Date |
|------------------|----------------|
| 31 | 2022-07-12 |
| 30 | 2022-02-22 |
| 29 | 2021-07-01 |
| 28 | 2021-01-15 |
| 27 | 2020-05-18 |
| 26 | 2020-02-14 |
| 25 | 2019-02-01 |
| 24_1 | 2018-05-01 |
| 24 | |
| 23 | 2017-05-18 |
| 22_1 | 2016-11-17 |
| 22 | |
| 21 | 2015-02-12 |
| 20 | 2015-02-03 |
| 19 | 2014-07-2333 |
| 18 | 2014-04-02 |
| 17 | 2013-09-16 |
| 16 | 2013-055555-15 |
| 15 | 2013-01-30 |
| 14 | 2012 -07-18 |
| 13 | 2012-02-29 |
| 12 | 2011-11-30 |
| 11 | 2011-06-07 |
| 10 | 2011-06-07 |
| 09 | 2011-01-04 |
| 08 | 2010-11-05 |
| 07 | 2010-09-03 |
| 06 | 2010-09-03 |
| 05 | 2010-06-07 |
| 04 | 2010-05-26 |
| 03 | 2010-04-30 |
| 02 | 2009-12-07 |
| 01 | 2009-10-28 |
%package help
Summary: Development documents and examples for chembl-downloader
Provides: python3-chembl-downloader-doc
%description help
<h1 align="center">
chembl_downloader
</h1>
<p align="center">
<a href="https://pypi.org/project/chembl_downloader">
<img alt="PyPI" src="https://img.shields.io/pypi/v/chembl_downloader" />
</a>
<a href="https://pypi.org/project/chembl_downloader">
<img alt="PyPI - Python Version" src="https://img.shields.io/pypi/pyversions/chembl_downloader" />
</a>
<a href="https://github.com/cthoyt/chembl_downloader/blob/main/LICENSE">
<img alt="PyPI - License" src="https://img.shields.io/pypi/l/chembl_downloader" />
</a>
<a href="https://zenodo.org/badge/latestdoi/390113187">
<img src="https://zenodo.org/badge/390113187.svg" alt="DOI" />
</a>
<a href="https://github.com/psf/black">
<img src="https://img.shields.io/badge/code%20style-black-000000.svg" alt="Code style: black" />
</a>
<a href='https://chembl-downloader.readthedocs.io/en/latest/?badge=latest'>
<img src='https://readthedocs.org/projects/chembl-downloader/badge/?version=latest' alt='Documentation Status' />
</a>
</p>
Don't worry about downloading/extracting ChEMBL or versioning - just use ``chembl_downloader`` to write code that knows
how to download it and use it automatically.
Install with:
```bash
$ pip install chembl-downloader
```
Full technical documentation can be found on
[ReadTheDocs](https://chembl-downloader.readthedocs.io). Tutorials can be found
in Jupyter notebooks in the [notebooks/](notebooks/) directory of the
repository.
## Database Usage
### Download A Specific Version
```python
import chembl_downloader
path = chembl_downloader.download_extract_sqlite(version='28')
```
After it's been downloaded and extracted once, it's smart and does not need to download again. It gets stored
using [`pystow`](https://github.com/cthoyt/pystow) automatically in the `~/.data/chembl`
directory.
We'd like to implement something such that it could load directly into SQLite from the archive, but it appears this is
a [paid feature](https://sqlite.org/purchase/zipvfs).
### Download the Latest Version
You can modify the previous code slightly by omitting the `version` keyword
argument to automatically find the latest version of ChEMBL:
```python
import chembl_downloader
path = chembl_downloader.download_extract_sqlite()
```
The `version` keyword argument is available for all functions in this package (e.g., including
`connect()`, `cursor()`, and `query()`), but will be omitted below for brevity.
### Automate Connection
Inside the archive is a single SQLite database file. Normally, people manually untar this folder then do something with
the resulting file. Don't do this, it's not reproducible!
Instead, the file can be downloaded and a connection can be opened automatically with:
```python
import chembl_downloader
with chembl_downloader.connect() as conn:
with conn.cursor() as cursor:
cursor.execute(...) # run your query string
rows = cursor.fetchall() # get your results
```
The `cursor()` function provides a convenient wrapper around this operation:
```python
import chembl_downloader
with chembl_downloader.cursor() as cursor:
cursor.execute(...) # run your query string
rows = cursor.fetchall() # get your results
```
### Run a query and get a pandas DataFrame
The most powerful function is `query()` which builds on the previous `connect()` function in combination
with [`pandas.read_sql`](https://pandas.pydata.org/docs/reference/api/pandas.read_sql.html)
to make a query and load the results into a pandas DataFrame for any downstream use.
```python
import chembl_downloader
sql = """
SELECT
MOLECULE_DICTIONARY.chembl_id,
MOLECULE_DICTIONARY.pref_name
FROM MOLECULE_DICTIONARY
JOIN COMPOUND_STRUCTURES ON MOLECULE_DICTIONARY.molregno == COMPOUND_STRUCTURES.molregno
WHERE molecule_dictionary.pref_name IS NOT NULL
LIMIT 5
"""
df = chembl_downloader.query(sql)
df.to_csv(..., sep='\t', index=False)
```
Suggestion 1: use `pystow` to make a reproducible file path that's portable to other people's machines
(e.g., it doesn't have your username in the path).
Suggestion 2: RDKit is now pip-installable with `pip install rdkit-pypi`, which means most users don't have to muck
around with complicated conda environments and configurations. One of the powerful but understated tools in RDKit is
the [rdkit.Chem.PandasTools](https://rdkit.org/docs/source/rdkit.Chem.PandasTools.html)
module.
### Access an RDKit supplier over entries in the SDF dump
This example is a bit more fit-for-purpose than the last two. The `supplier()` function makes sure that the latest SDF
dump is downloaded and loads it from the gzip file into a `rdkit.Chem.ForwardSDMolSupplier`
using a context manager to make sure the file doesn't get closed until after parsing is done. Like the previous
examples, it can also explicitly take a `version`.
```python
from rdkit import Chem
import chembl_downloader
with chembl_downloader.supplier() as suppl:
data = []
for i, mol in enumerate(suppl):
if mol is None or mol.GetNumAtoms() > 50:
continue
fp = Chem.PatternFingerprint(mol, fpSize=1024, tautomerFingerprints=True)
smi = Chem.MolToSmiles(mol)
data.append((smi, fp))
```
This example was adapted from Greg Landrum's RDKit blog post
on [generalized substructure search](https://greglandrum.github.io/rdkit-blog/tutorial/substructure/2021/08/03/generalized-substructure-search.html).
## SDF Usage
### Get an RDKit substructure library
Building on the `supplier()` function, the `get_substructure_library()`
makes the preparation of a [substructure library](https://www.rdkit.org/docs/cppapi/classRDKit_1_1SubstructLibrary.html)
automated and reproducible. Additionally, it caches the results of the build,
which takes on the order of tens of minutes, only has to be done once and future
loading from a pickle object takes on the order of seconds.
The implementation was inspired by Greg Landrum's RDKit blog post,
[Some new features in the SubstructLibrary](https://greglandrum.github.io/rdkit-blog/tutorial/substructure/2021/12/20/substructlibrary-search-order.html).
The following example shows how it can be used to accomplish some of the first
tasks presented in the post:
```python
from rdkit import Chem
import chembl_downloader
library = chembl_downloader.get_substructure_library()
query = Chem.MolFromSmarts('[O,N]=C-c:1:c:c:n:c:c:1')
matches = library.GetMatches(query)
```
## Morgan Fingerprints Usage
### Get the Morgan Fingerprint file
ChEMBL makes a file containing pre-computed 2048 bit radius 2 morgan
fingerprints for each molecule available. It can be downloaded using:
```python
import chembl_downloader
path = chembl_downloader.download_fps()
```
The `version` and other keyword arguments are also valid for this function.
### Load fingerprints with [`chemfp`](https://chemfp.com/)
The following wraps the `download_fps` function with `chemfp`'s fingerprint
loader:
```python
import chembl_downloader
arena = chembl_downloader.chemfp_load_fps()
```
The `version` and other keyword arguments are also valid for this function.
More information on working with the `arena` object can be found
[here](https://chemfp.readthedocs.io/en/latest/using-api.html#working-with-a-fingerprintarena).
## Extras
### Store in a Different Place
If you want to store the data elsewhere using `pystow` (e.g., in [`pyobo`](https://github.com/pyobo/pyobo)
I also keep a copy of this file), you can use the `prefix` argument.
```python
import chembl_downloader
# It gets downloaded/extracted to
# ~/.data/pyobo/raw/chembl/29/chembl_29/chembl_29_sqlite/chembl_29.db
path = chembl_downloader.download_extract_sqlite(prefix=['pyobo', 'raw', 'chembl'])
```
See the `pystow` [documentation](https://github.com/cthoyt/pystow#%EF%B8%8F-configuration) on configuring the storage
location further.
The `prefix` keyword argument is available for all functions in this package (e.g., including
`connect()`, `cursor()`, and `query()`).
### Download via CLI
After installing, run the following CLI command to ensure it and send the path to stdout
```bash
$ chembl_downloader
```
Use `--test` to show two example queries
```bash
$ chembl_downloader --test
```
## Contributing
Please read the contribution guidelines in [CONTRIBUTING.md](.github/CONTRIBUTING.md).
If you'd like to contribute, there's a submodule called `chembl_downloader.queries`
where you can add a useful SQL queries along with a description of what it does for easy
importing and reuse.
## Statistics and Compatibility
`chembl-downloader` is compatible with all versions of ChEMBL. However, some files are
not available for all versions. For example, the SQLite version of the database was first
added in release 21 (2015-02-12).
| ChEMBL Version | Release Date |
|------------------|----------------|
| 31 | 2022-07-12 |
| 30 | 2022-02-22 |
| 29 | 2021-07-01 |
| 28 | 2021-01-15 |
| 27 | 2020-05-18 |
| 26 | 2020-02-14 |
| 25 | 2019-02-01 |
| 24_1 | 2018-05-01 |
| 24 | |
| 23 | 2017-05-18 |
| 22_1 | 2016-11-17 |
| 22 | |
| 21 | 2015-02-12 |
| 20 | 2015-02-03 |
| 19 | 2014-07-2333 |
| 18 | 2014-04-02 |
| 17 | 2013-09-16 |
| 16 | 2013-055555-15 |
| 15 | 2013-01-30 |
| 14 | 2012 -07-18 |
| 13 | 2012-02-29 |
| 12 | 2011-11-30 |
| 11 | 2011-06-07 |
| 10 | 2011-06-07 |
| 09 | 2011-01-04 |
| 08 | 2010-11-05 |
| 07 | 2010-09-03 |
| 06 | 2010-09-03 |
| 05 | 2010-06-07 |
| 04 | 2010-05-26 |
| 03 | 2010-04-30 |
| 02 | 2009-12-07 |
| 01 | 2009-10-28 |
%prep
%autosetup -n chembl-downloader-0.4.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-chembl-downloader -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.2-1
- Package Spec generated
|