1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
|
%global _empty_manifest_terminate_build 0
Name: python-chronometry
Version: 2020.11.12
Release: 1
Summary: Python library for tracking time and displaying progress bars
License: MIT
URL: https://github.com/idin/chronometry
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/93/15/c445e164db7dcb2068653974931964433af911b17ece66f6923941ad3b3e/chronometry-2020.11.12.tar.gz
BuildArch: noarch
Requires: python3-pandas
Requires: python3-numpy
Requires: python3-slytherin
Requires: python3-colouration
Requires: python3-sklearn
Requires: python3-ravenclaw
Requires: python3-func-timeout
Requires: python3-matplotlib
%description
# *Chronometry*
## `ProgressBar`
## `Estimator`
`Estimator` is an object that estimates the running time of a single argument function.
You can use it to avoid running a script for too long.
For example, if you want to cluster a large dataset and running it might take too long,
and cost too much if you use cloud computing,
you can create a function with one argument `x` which takes a sample with `x` rows
and clusters it; then you can use `Estimator` to estimate how long it takes to run it
on the full dataset by providing the actual number of rows to the `estimate()` method.
`Estimator` uses a *Polynomial* *Linear Regression* model
and gives more weight to larger numbers for the training.
### Usage
```python
from chronometry import Estimator
from time import sleep
def multiply_with_no_delay(x, y):
return (x ** 2 + 0.1 * x ** 3 + 1) * 0.00001 + y * 0.001
def multiply(x, y):
sleep_time = multiply_with_no_delay(x, y)
if sleep_time > 30:
raise
sleep(sleep_time)
if y == 6:
sleep(12)
elif 7 < y < 15:
raise Exception()
return sleep_time
estimator = Estimator(function=multiply, polynomial_degree=3, timeout=5)
# the `unit` argument chooses the unit of time to be used. By default unit='s'
estimator.auto_explore()
estimator.predict_time(x=10000, y=10000)
```
The above code runs for about *53* seconds and then estimates that
`multiply(10000, 10000)` will take *1002371.7* seconds which is only slightly
smaller than the correct number: *1001010* seconds.
`max_time` is the maximum time allowed for the estimate function to run.
If you are using `Estimator` in *Jupyter*,
you can plot the measurements with the `plot()` method (no arguments needed) which
returns a `matplotlib` `AxesSubplot` object and displays it at the same time.
```python
estimator.plot('x')
estimator.plot('y')
```
%package -n python3-chronometry
Summary: Python library for tracking time and displaying progress bars
Provides: python-chronometry
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-chronometry
# *Chronometry*
## `ProgressBar`
## `Estimator`
`Estimator` is an object that estimates the running time of a single argument function.
You can use it to avoid running a script for too long.
For example, if you want to cluster a large dataset and running it might take too long,
and cost too much if you use cloud computing,
you can create a function with one argument `x` which takes a sample with `x` rows
and clusters it; then you can use `Estimator` to estimate how long it takes to run it
on the full dataset by providing the actual number of rows to the `estimate()` method.
`Estimator` uses a *Polynomial* *Linear Regression* model
and gives more weight to larger numbers for the training.
### Usage
```python
from chronometry import Estimator
from time import sleep
def multiply_with_no_delay(x, y):
return (x ** 2 + 0.1 * x ** 3 + 1) * 0.00001 + y * 0.001
def multiply(x, y):
sleep_time = multiply_with_no_delay(x, y)
if sleep_time > 30:
raise
sleep(sleep_time)
if y == 6:
sleep(12)
elif 7 < y < 15:
raise Exception()
return sleep_time
estimator = Estimator(function=multiply, polynomial_degree=3, timeout=5)
# the `unit` argument chooses the unit of time to be used. By default unit='s'
estimator.auto_explore()
estimator.predict_time(x=10000, y=10000)
```
The above code runs for about *53* seconds and then estimates that
`multiply(10000, 10000)` will take *1002371.7* seconds which is only slightly
smaller than the correct number: *1001010* seconds.
`max_time` is the maximum time allowed for the estimate function to run.
If you are using `Estimator` in *Jupyter*,
you can plot the measurements with the `plot()` method (no arguments needed) which
returns a `matplotlib` `AxesSubplot` object and displays it at the same time.
```python
estimator.plot('x')
estimator.plot('y')
```
%package help
Summary: Development documents and examples for chronometry
Provides: python3-chronometry-doc
%description help
# *Chronometry*
## `ProgressBar`
## `Estimator`
`Estimator` is an object that estimates the running time of a single argument function.
You can use it to avoid running a script for too long.
For example, if you want to cluster a large dataset and running it might take too long,
and cost too much if you use cloud computing,
you can create a function with one argument `x` which takes a sample with `x` rows
and clusters it; then you can use `Estimator` to estimate how long it takes to run it
on the full dataset by providing the actual number of rows to the `estimate()` method.
`Estimator` uses a *Polynomial* *Linear Regression* model
and gives more weight to larger numbers for the training.
### Usage
```python
from chronometry import Estimator
from time import sleep
def multiply_with_no_delay(x, y):
return (x ** 2 + 0.1 * x ** 3 + 1) * 0.00001 + y * 0.001
def multiply(x, y):
sleep_time = multiply_with_no_delay(x, y)
if sleep_time > 30:
raise
sleep(sleep_time)
if y == 6:
sleep(12)
elif 7 < y < 15:
raise Exception()
return sleep_time
estimator = Estimator(function=multiply, polynomial_degree=3, timeout=5)
# the `unit` argument chooses the unit of time to be used. By default unit='s'
estimator.auto_explore()
estimator.predict_time(x=10000, y=10000)
```
The above code runs for about *53* seconds and then estimates that
`multiply(10000, 10000)` will take *1002371.7* seconds which is only slightly
smaller than the correct number: *1001010* seconds.
`max_time` is the maximum time allowed for the estimate function to run.
If you are using `Estimator` in *Jupyter*,
you can plot the measurements with the `plot()` method (no arguments needed) which
returns a `matplotlib` `AxesSubplot` object and displays it at the same time.
```python
estimator.plot('x')
estimator.plot('y')
```
%prep
%autosetup -n chronometry-2020.11.12
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-chronometry -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 2020.11.12-1
- Package Spec generated
|