1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
|
%global _empty_manifest_terminate_build 0
Name: python-ci-sdr
Version: 0.0.2
Release: 1
Summary: A sample Python project
License: MIT License
URL: https://github.com/fgnt/ci_sdr
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/db/c0/1f9a358e31f8d329b1fe32dc05d9b1761472443e4f759771c21f60285198/ci_sdr-0.0.2.tar.gz
BuildArch: noarch
%description
# Convolutive Transfer Function Invariant SDR

[](https://pypi.org/project/ci-sdr)
[](https://codecov.io/github/fgnt/ci_sdr?branch=main)
[](https://pypi.org/project/ci-sdr)
[](https://github.com/fgnt/ci_sdr/blob/master/LICENSE)
<!--  -->
This repository contains an implementation for the `Convolutive transfer function Invariant Signal-to-Distortion Ratio` objective for PyTorch as described in the publication `Convolutive Transfer Function Invariant SDR training criteria for Multi-Channel Reverberant Speech Separation` ([link arXiv][arXiv]).
Here, a small example, how you can use this CI-SDR objective in your own source code:
```python
import torch
import ci_sdr
reference: torch.tensor = ...
# reference.shape: [speakers, samples]
estimation: torch.tensor = ...
# estimation shape: [speakers, samples]
sdr = ci_sdr.pt.ci_sdr_loss(estimation, reference)
# sdr shape: [speakers]
```
The idea of this objective function is based in the theory from `E. Vincent, R. Gribonval and C. Févotte, Performance measurement in blind audio source separation, IEEE Trans. Audio, Speech and Language Processing`, known as
`BSSEval`.
The original author provided MATLAB source code ([link](http://bass-db.gforge.inria.fr/bss_eval/)) and the package `mir_eval` ([link](http://craffel.github.io/mir_eval/#module-mir_eval.separation)) contains a python port. Some peoble refer to these implementations as `BSSEval v3` ([link](https://github.com/sigsep/bsseval)).
The PyTorch code in this package is tested to yield the same `SDR` values as `mir_eval` with the default parameters.
> **NOTE:** If you want to use `BSSEval v3 SDR` as metric, I recomment to use `mir_eval.separation.bss_eval_sources` and use as reference the clean/unreverberated source signals. The implementation in this repository has minor difference that makes it problematic to compare SDR values accorss different publications (e.g. here the permutation is calculated on the SDR, while `mir_eval` computes it based on the `SIR`.).
# Installation
Install it directly with Pip, if you just want to use it:
```bash
pip install ci-sdr
```
or to get the recent version:
```bash
pip install git+https://github.com/fgnt/ci_sdr.git
```
If you want to install it with `all` dependencies (test and doctest dependencies), run:
```bash
pip install git+https://github.com/fgnt/ci_sdr.git#egg=ci_sdr[all]
```
When you want to change the code, clone this repository and install it as `editable`:
```bash
git clone https://github.com/fgnt/ci_sdr.git
cd ci_sdr
pip install --editable .
# pip install --editable .[all]
```
# Citation
To cite this implementation, you can cite the following paper ([link][arXiv]):
```
@article{boeddeker2020convolutive,
title = {Convolutive Transfer Function Invariant {SDR} training criteria for Multi-Channel Reverberant Speech Separation},
author = {Boeddeker, Christoph and Zhang, Wangyou and Nakatani, Tomohiro and Kinoshita, Keisuke and Ochiai, Tsubasa and Delcroix, Marc and Kamo, Naoyuki and Qian, Yanmin and Haeb-Umbach, Reinhold},
journal = {arXiv preprint arXiv:2011.15003},
year = {2020}
}
```
[arXiv]: https://arxiv.org/abs/2011.15003
%package -n python3-ci-sdr
Summary: A sample Python project
Provides: python-ci-sdr
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-ci-sdr
# Convolutive Transfer Function Invariant SDR

[](https://pypi.org/project/ci-sdr)
[](https://codecov.io/github/fgnt/ci_sdr?branch=main)
[](https://pypi.org/project/ci-sdr)
[](https://github.com/fgnt/ci_sdr/blob/master/LICENSE)
<!--  -->
This repository contains an implementation for the `Convolutive transfer function Invariant Signal-to-Distortion Ratio` objective for PyTorch as described in the publication `Convolutive Transfer Function Invariant SDR training criteria for Multi-Channel Reverberant Speech Separation` ([link arXiv][arXiv]).
Here, a small example, how you can use this CI-SDR objective in your own source code:
```python
import torch
import ci_sdr
reference: torch.tensor = ...
# reference.shape: [speakers, samples]
estimation: torch.tensor = ...
# estimation shape: [speakers, samples]
sdr = ci_sdr.pt.ci_sdr_loss(estimation, reference)
# sdr shape: [speakers]
```
The idea of this objective function is based in the theory from `E. Vincent, R. Gribonval and C. Févotte, Performance measurement in blind audio source separation, IEEE Trans. Audio, Speech and Language Processing`, known as
`BSSEval`.
The original author provided MATLAB source code ([link](http://bass-db.gforge.inria.fr/bss_eval/)) and the package `mir_eval` ([link](http://craffel.github.io/mir_eval/#module-mir_eval.separation)) contains a python port. Some peoble refer to these implementations as `BSSEval v3` ([link](https://github.com/sigsep/bsseval)).
The PyTorch code in this package is tested to yield the same `SDR` values as `mir_eval` with the default parameters.
> **NOTE:** If you want to use `BSSEval v3 SDR` as metric, I recomment to use `mir_eval.separation.bss_eval_sources` and use as reference the clean/unreverberated source signals. The implementation in this repository has minor difference that makes it problematic to compare SDR values accorss different publications (e.g. here the permutation is calculated on the SDR, while `mir_eval` computes it based on the `SIR`.).
# Installation
Install it directly with Pip, if you just want to use it:
```bash
pip install ci-sdr
```
or to get the recent version:
```bash
pip install git+https://github.com/fgnt/ci_sdr.git
```
If you want to install it with `all` dependencies (test and doctest dependencies), run:
```bash
pip install git+https://github.com/fgnt/ci_sdr.git#egg=ci_sdr[all]
```
When you want to change the code, clone this repository and install it as `editable`:
```bash
git clone https://github.com/fgnt/ci_sdr.git
cd ci_sdr
pip install --editable .
# pip install --editable .[all]
```
# Citation
To cite this implementation, you can cite the following paper ([link][arXiv]):
```
@article{boeddeker2020convolutive,
title = {Convolutive Transfer Function Invariant {SDR} training criteria for Multi-Channel Reverberant Speech Separation},
author = {Boeddeker, Christoph and Zhang, Wangyou and Nakatani, Tomohiro and Kinoshita, Keisuke and Ochiai, Tsubasa and Delcroix, Marc and Kamo, Naoyuki and Qian, Yanmin and Haeb-Umbach, Reinhold},
journal = {arXiv preprint arXiv:2011.15003},
year = {2020}
}
```
[arXiv]: https://arxiv.org/abs/2011.15003
%package help
Summary: Development documents and examples for ci-sdr
Provides: python3-ci-sdr-doc
%description help
# Convolutive Transfer Function Invariant SDR

[](https://pypi.org/project/ci-sdr)
[](https://codecov.io/github/fgnt/ci_sdr?branch=main)
[](https://pypi.org/project/ci-sdr)
[](https://github.com/fgnt/ci_sdr/blob/master/LICENSE)
<!--  -->
This repository contains an implementation for the `Convolutive transfer function Invariant Signal-to-Distortion Ratio` objective for PyTorch as described in the publication `Convolutive Transfer Function Invariant SDR training criteria for Multi-Channel Reverberant Speech Separation` ([link arXiv][arXiv]).
Here, a small example, how you can use this CI-SDR objective in your own source code:
```python
import torch
import ci_sdr
reference: torch.tensor = ...
# reference.shape: [speakers, samples]
estimation: torch.tensor = ...
# estimation shape: [speakers, samples]
sdr = ci_sdr.pt.ci_sdr_loss(estimation, reference)
# sdr shape: [speakers]
```
The idea of this objective function is based in the theory from `E. Vincent, R. Gribonval and C. Févotte, Performance measurement in blind audio source separation, IEEE Trans. Audio, Speech and Language Processing`, known as
`BSSEval`.
The original author provided MATLAB source code ([link](http://bass-db.gforge.inria.fr/bss_eval/)) and the package `mir_eval` ([link](http://craffel.github.io/mir_eval/#module-mir_eval.separation)) contains a python port. Some peoble refer to these implementations as `BSSEval v3` ([link](https://github.com/sigsep/bsseval)).
The PyTorch code in this package is tested to yield the same `SDR` values as `mir_eval` with the default parameters.
> **NOTE:** If you want to use `BSSEval v3 SDR` as metric, I recomment to use `mir_eval.separation.bss_eval_sources` and use as reference the clean/unreverberated source signals. The implementation in this repository has minor difference that makes it problematic to compare SDR values accorss different publications (e.g. here the permutation is calculated on the SDR, while `mir_eval` computes it based on the `SIR`.).
# Installation
Install it directly with Pip, if you just want to use it:
```bash
pip install ci-sdr
```
or to get the recent version:
```bash
pip install git+https://github.com/fgnt/ci_sdr.git
```
If you want to install it with `all` dependencies (test and doctest dependencies), run:
```bash
pip install git+https://github.com/fgnt/ci_sdr.git#egg=ci_sdr[all]
```
When you want to change the code, clone this repository and install it as `editable`:
```bash
git clone https://github.com/fgnt/ci_sdr.git
cd ci_sdr
pip install --editable .
# pip install --editable .[all]
```
# Citation
To cite this implementation, you can cite the following paper ([link][arXiv]):
```
@article{boeddeker2020convolutive,
title = {Convolutive Transfer Function Invariant {SDR} training criteria for Multi-Channel Reverberant Speech Separation},
author = {Boeddeker, Christoph and Zhang, Wangyou and Nakatani, Tomohiro and Kinoshita, Keisuke and Ochiai, Tsubasa and Delcroix, Marc and Kamo, Naoyuki and Qian, Yanmin and Haeb-Umbach, Reinhold},
journal = {arXiv preprint arXiv:2011.15003},
year = {2020}
}
```
[arXiv]: https://arxiv.org/abs/2011.15003
%prep
%autosetup -n ci-sdr-0.0.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-ci-sdr -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.2-1
- Package Spec generated
|