summaryrefslogtreecommitdiff
path: root/python-cimcb.spec
diff options
context:
space:
mode:
Diffstat (limited to 'python-cimcb.spec')
-rw-r--r--python-cimcb.spec368
1 files changed, 368 insertions, 0 deletions
diff --git a/python-cimcb.spec b/python-cimcb.spec
new file mode 100644
index 0000000..66a71c4
--- /dev/null
+++ b/python-cimcb.spec
@@ -0,0 +1,368 @@
+%global _empty_manifest_terminate_build 0
+Name: python-cimcb
+Version: 1.1.0
+Release: 1
+Summary: This is a pre-release.
+License: http://www.apache.org/licenses/LICENSE-2.0.html
+URL: https://github.com/KevinMMendez/cimcb
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/0f/48/1be2926978b5eecac0ae6c5427d8c9a20d8a07886659131d675e522d9bb3/cimcb-1.1.0.tar.gz
+BuildArch: noarch
+
+Requires: python3-bokeh
+Requires: python3-keras
+Requires: python3-numpy
+Requires: python3-pandas
+Requires: python3-scipy
+Requires: python3-scikit-learn
+Requires: python3-statsmodels
+Requires: python3-tensorflow
+Requires: python3-tqdm
+Requires: python3-xlrd
+Requires: python3-joblib
+
+%description
+<img src="cimcb_logo.png" alt="drawing" width="400"/>
+
+# cimcb
+cimcb package containing the necessary tools for the statistical analysis of untargeted and targeted metabolomics data.
+
+## Installation
+
+### Dependencies
+cimcb requires:
+- Python (>=3.5)
+- Bokeh (>=1.0.0)
+- Keras
+- NumPy (>=1.12)
+- SciPy
+- scikit-learn
+- Statsmodels
+- TensorFlow
+- tqdm
+
+### User installation
+The recommend way to install cimcb and dependencies is to using ``conda``:
+```console
+conda install -c cimcb cimcb
+```
+or ``pip``:
+```console
+pip install cimcb
+```
+Alternatively, to install directly from github:
+```console
+pip install https://github.com/KevinMMendez/cimcb/archive/master.zip
+```
+
+### Tutorial
+Open with Binders:
+
+[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/KevinMMendez/BinderTutorial_Workflow/master?filepath=BinderTutorial_Workflow.ipynb)
+
+### API
+For futher detail on the usage refer to the docstring.
+
+#### cimcb.model
+- [PLS_SIMPLS](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/PLS_SIMPLS.py#L14-L36): Partial least-squares regression using the SIMPLS algorithm.
+- [PCR](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/PCR.py#L8-L29): Principal component regression.
+- [PCLR](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/PCLR.py#L8-L29): Principal component logistic regression.
+- [RF](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/RF.py#L8-L9): Random forest.
+- [SVM](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/SVM.py#L8-L9): Support Vector Machine.
+- [RBF_NN](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/RBF_NN.py#L8-L9): Radial basis function neural network.
+- [NN_LinearLinear](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/NN_LinearLinear.py#L7-L8): 2 Layer linear-linear neural network.
+- [NN_LinearLogit](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/NN_LinearLogit.py#L7-L8): 2 Layer linear-logistic neural network.
+- [NN_LogitLogit](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/NN_LogitLogit.py#L7-L8): 2 Layer logistic-logistic neural network.
+
+#### cimcb.plot
+- [boxplot](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/boxplot.py#L8-L18): Creates a boxplot using Bokeh.
+- [distribution](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/distribution.py#L6-L16): Creates a distribution plot using Bokeh.
+- [pca](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/pca.py#L10-L17): Creates a PCA scores and loadings plot using Bokeh.
+- [permutation_test](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/permutation_test.py#L13-L27): Creates permutation test plots using Bokeh.
+- [roc_plot](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/roc.py#L11-L24): Creates a rocplot using Bokeh.
+- [scatter](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/scatter.py#L6-L16): Creates a scatterplot using Bokeh.
+- [scatterCI](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/scatterCI.py#L7-L14): Creates a scatterCI plot using Bokeh.
+
+#### cimcb.cross_val
+- [kfold](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/cross_val/kfold.py#L14-L42): Exhaustitive search over param_dict calculating binary metrics.
+
+#### cimcb.bootstrap
+- [Perc](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/bootstrap/Perc.py#L6-L35): Returns bootstrap confidence intervals using the percentile boostrap interval.
+- [BC](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/bootstrap/BC.py#L8-L37): Returns bootstrap confidence intervals using the bias-corrected boostrap interval.
+- [BCA](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/bootstrap/BCA.py#L8-L36): Returns bootstrap confidence intervals using the bias-corrected and accelerated boostrap interval.
+
+#### cimcb.utils
+- [binary_metrics](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/binary_metrics.py#L5-L23): Return a dict of binary stats with the following metrics: R2, auc, accuracy, precision, sensitivity, specificity, and F1 score.
+- [ci95_ellipse](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/ci95_ellipse.py#L6-L28): Construct a 95% confidence ellipse using PCA.
+- [knnimpute](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/knnimpute.py#L7-L22): kNN missing value imputation using Euclidean distance.
+- [load_dataXL](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/load_dataXL.py#L7-L29): Loads and validates the DataFile and PeakFile from an excel file.
+- [nested_getattr](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/nested_getattr.py#L4-L5): getattr for nested attributes.
+- [scale](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/scale.py#L4-L42): Scales x (which can include nans) with method: 'auto', 'pareto', 'vast', or 'level'.
+- [table_check](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/table_check.py#L4-L17): Error checking for DataTable and PeakTable (used in load_dataXL).
+- [univariate_2class](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/univariate_2class.py#L8-L35): Creates a table of univariate statistics (2 class).
+- [wmean](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/wmean.py#L4-L19): Returns Weighted Mean. Ignores NaNs and handles infinite weights.
+
+### License
+cimcb is licensed under the ___ license.
+
+### Authors
+- Kevin Mendez
+- [David Broadhurst](https://scholar.google.ca/citations?user=M3_zZwUAAAAJ&hl=en)
+
+### Correspondence
+Professor David Broadhurst, Director of the Centre for Integrative Metabolomics & Computation Biology at Edith Cowan University.
+E-mail: d.broadhurst@ecu.edu.au
+
+### Citation
+If you would cite cimcb in a scientific publication, you can use the following: ___
+
+
+
+
+%package -n python3-cimcb
+Summary: This is a pre-release.
+Provides: python-cimcb
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-cimcb
+<img src="cimcb_logo.png" alt="drawing" width="400"/>
+
+# cimcb
+cimcb package containing the necessary tools for the statistical analysis of untargeted and targeted metabolomics data.
+
+## Installation
+
+### Dependencies
+cimcb requires:
+- Python (>=3.5)
+- Bokeh (>=1.0.0)
+- Keras
+- NumPy (>=1.12)
+- SciPy
+- scikit-learn
+- Statsmodels
+- TensorFlow
+- tqdm
+
+### User installation
+The recommend way to install cimcb and dependencies is to using ``conda``:
+```console
+conda install -c cimcb cimcb
+```
+or ``pip``:
+```console
+pip install cimcb
+```
+Alternatively, to install directly from github:
+```console
+pip install https://github.com/KevinMMendez/cimcb/archive/master.zip
+```
+
+### Tutorial
+Open with Binders:
+
+[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/KevinMMendez/BinderTutorial_Workflow/master?filepath=BinderTutorial_Workflow.ipynb)
+
+### API
+For futher detail on the usage refer to the docstring.
+
+#### cimcb.model
+- [PLS_SIMPLS](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/PLS_SIMPLS.py#L14-L36): Partial least-squares regression using the SIMPLS algorithm.
+- [PCR](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/PCR.py#L8-L29): Principal component regression.
+- [PCLR](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/PCLR.py#L8-L29): Principal component logistic regression.
+- [RF](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/RF.py#L8-L9): Random forest.
+- [SVM](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/SVM.py#L8-L9): Support Vector Machine.
+- [RBF_NN](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/RBF_NN.py#L8-L9): Radial basis function neural network.
+- [NN_LinearLinear](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/NN_LinearLinear.py#L7-L8): 2 Layer linear-linear neural network.
+- [NN_LinearLogit](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/NN_LinearLogit.py#L7-L8): 2 Layer linear-logistic neural network.
+- [NN_LogitLogit](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/NN_LogitLogit.py#L7-L8): 2 Layer logistic-logistic neural network.
+
+#### cimcb.plot
+- [boxplot](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/boxplot.py#L8-L18): Creates a boxplot using Bokeh.
+- [distribution](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/distribution.py#L6-L16): Creates a distribution plot using Bokeh.
+- [pca](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/pca.py#L10-L17): Creates a PCA scores and loadings plot using Bokeh.
+- [permutation_test](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/permutation_test.py#L13-L27): Creates permutation test plots using Bokeh.
+- [roc_plot](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/roc.py#L11-L24): Creates a rocplot using Bokeh.
+- [scatter](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/scatter.py#L6-L16): Creates a scatterplot using Bokeh.
+- [scatterCI](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/scatterCI.py#L7-L14): Creates a scatterCI plot using Bokeh.
+
+#### cimcb.cross_val
+- [kfold](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/cross_val/kfold.py#L14-L42): Exhaustitive search over param_dict calculating binary metrics.
+
+#### cimcb.bootstrap
+- [Perc](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/bootstrap/Perc.py#L6-L35): Returns bootstrap confidence intervals using the percentile boostrap interval.
+- [BC](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/bootstrap/BC.py#L8-L37): Returns bootstrap confidence intervals using the bias-corrected boostrap interval.
+- [BCA](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/bootstrap/BCA.py#L8-L36): Returns bootstrap confidence intervals using the bias-corrected and accelerated boostrap interval.
+
+#### cimcb.utils
+- [binary_metrics](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/binary_metrics.py#L5-L23): Return a dict of binary stats with the following metrics: R2, auc, accuracy, precision, sensitivity, specificity, and F1 score.
+- [ci95_ellipse](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/ci95_ellipse.py#L6-L28): Construct a 95% confidence ellipse using PCA.
+- [knnimpute](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/knnimpute.py#L7-L22): kNN missing value imputation using Euclidean distance.
+- [load_dataXL](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/load_dataXL.py#L7-L29): Loads and validates the DataFile and PeakFile from an excel file.
+- [nested_getattr](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/nested_getattr.py#L4-L5): getattr for nested attributes.
+- [scale](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/scale.py#L4-L42): Scales x (which can include nans) with method: 'auto', 'pareto', 'vast', or 'level'.
+- [table_check](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/table_check.py#L4-L17): Error checking for DataTable and PeakTable (used in load_dataXL).
+- [univariate_2class](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/univariate_2class.py#L8-L35): Creates a table of univariate statistics (2 class).
+- [wmean](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/wmean.py#L4-L19): Returns Weighted Mean. Ignores NaNs and handles infinite weights.
+
+### License
+cimcb is licensed under the ___ license.
+
+### Authors
+- Kevin Mendez
+- [David Broadhurst](https://scholar.google.ca/citations?user=M3_zZwUAAAAJ&hl=en)
+
+### Correspondence
+Professor David Broadhurst, Director of the Centre for Integrative Metabolomics & Computation Biology at Edith Cowan University.
+E-mail: d.broadhurst@ecu.edu.au
+
+### Citation
+If you would cite cimcb in a scientific publication, you can use the following: ___
+
+
+
+
+%package help
+Summary: Development documents and examples for cimcb
+Provides: python3-cimcb-doc
+%description help
+<img src="cimcb_logo.png" alt="drawing" width="400"/>
+
+# cimcb
+cimcb package containing the necessary tools for the statistical analysis of untargeted and targeted metabolomics data.
+
+## Installation
+
+### Dependencies
+cimcb requires:
+- Python (>=3.5)
+- Bokeh (>=1.0.0)
+- Keras
+- NumPy (>=1.12)
+- SciPy
+- scikit-learn
+- Statsmodels
+- TensorFlow
+- tqdm
+
+### User installation
+The recommend way to install cimcb and dependencies is to using ``conda``:
+```console
+conda install -c cimcb cimcb
+```
+or ``pip``:
+```console
+pip install cimcb
+```
+Alternatively, to install directly from github:
+```console
+pip install https://github.com/KevinMMendez/cimcb/archive/master.zip
+```
+
+### Tutorial
+Open with Binders:
+
+[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/KevinMMendez/BinderTutorial_Workflow/master?filepath=BinderTutorial_Workflow.ipynb)
+
+### API
+For futher detail on the usage refer to the docstring.
+
+#### cimcb.model
+- [PLS_SIMPLS](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/PLS_SIMPLS.py#L14-L36): Partial least-squares regression using the SIMPLS algorithm.
+- [PCR](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/PCR.py#L8-L29): Principal component regression.
+- [PCLR](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/PCLR.py#L8-L29): Principal component logistic regression.
+- [RF](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/RF.py#L8-L9): Random forest.
+- [SVM](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/SVM.py#L8-L9): Support Vector Machine.
+- [RBF_NN](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/RBF_NN.py#L8-L9): Radial basis function neural network.
+- [NN_LinearLinear](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/NN_LinearLinear.py#L7-L8): 2 Layer linear-linear neural network.
+- [NN_LinearLogit](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/NN_LinearLogit.py#L7-L8): 2 Layer linear-logistic neural network.
+- [NN_LogitLogit](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/NN_LogitLogit.py#L7-L8): 2 Layer logistic-logistic neural network.
+
+#### cimcb.plot
+- [boxplot](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/boxplot.py#L8-L18): Creates a boxplot using Bokeh.
+- [distribution](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/distribution.py#L6-L16): Creates a distribution plot using Bokeh.
+- [pca](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/pca.py#L10-L17): Creates a PCA scores and loadings plot using Bokeh.
+- [permutation_test](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/permutation_test.py#L13-L27): Creates permutation test plots using Bokeh.
+- [roc_plot](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/roc.py#L11-L24): Creates a rocplot using Bokeh.
+- [scatter](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/scatter.py#L6-L16): Creates a scatterplot using Bokeh.
+- [scatterCI](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/scatterCI.py#L7-L14): Creates a scatterCI plot using Bokeh.
+
+#### cimcb.cross_val
+- [kfold](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/cross_val/kfold.py#L14-L42): Exhaustitive search over param_dict calculating binary metrics.
+
+#### cimcb.bootstrap
+- [Perc](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/bootstrap/Perc.py#L6-L35): Returns bootstrap confidence intervals using the percentile boostrap interval.
+- [BC](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/bootstrap/BC.py#L8-L37): Returns bootstrap confidence intervals using the bias-corrected boostrap interval.
+- [BCA](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/bootstrap/BCA.py#L8-L36): Returns bootstrap confidence intervals using the bias-corrected and accelerated boostrap interval.
+
+#### cimcb.utils
+- [binary_metrics](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/binary_metrics.py#L5-L23): Return a dict of binary stats with the following metrics: R2, auc, accuracy, precision, sensitivity, specificity, and F1 score.
+- [ci95_ellipse](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/ci95_ellipse.py#L6-L28): Construct a 95% confidence ellipse using PCA.
+- [knnimpute](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/knnimpute.py#L7-L22): kNN missing value imputation using Euclidean distance.
+- [load_dataXL](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/load_dataXL.py#L7-L29): Loads and validates the DataFile and PeakFile from an excel file.
+- [nested_getattr](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/nested_getattr.py#L4-L5): getattr for nested attributes.
+- [scale](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/scale.py#L4-L42): Scales x (which can include nans) with method: 'auto', 'pareto', 'vast', or 'level'.
+- [table_check](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/table_check.py#L4-L17): Error checking for DataTable and PeakTable (used in load_dataXL).
+- [univariate_2class](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/univariate_2class.py#L8-L35): Creates a table of univariate statistics (2 class).
+- [wmean](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/wmean.py#L4-L19): Returns Weighted Mean. Ignores NaNs and handles infinite weights.
+
+### License
+cimcb is licensed under the ___ license.
+
+### Authors
+- Kevin Mendez
+- [David Broadhurst](https://scholar.google.ca/citations?user=M3_zZwUAAAAJ&hl=en)
+
+### Correspondence
+Professor David Broadhurst, Director of the Centre for Integrative Metabolomics & Computation Biology at Edith Cowan University.
+E-mail: d.broadhurst@ecu.edu.au
+
+### Citation
+If you would cite cimcb in a scientific publication, you can use the following: ___
+
+
+
+
+%prep
+%autosetup -n cimcb-1.1.0
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-cimcb -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Mon May 15 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.0-1
+- Package Spec generated