1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
|
%global _empty_manifest_terminate_build 0
Name: python-cimcb
Version: 1.1.0
Release: 1
Summary: This is a pre-release.
License: http://www.apache.org/licenses/LICENSE-2.0.html
URL: https://github.com/KevinMMendez/cimcb
Source0: https://mirrors.aliyun.com/pypi/web/packages/0f/48/1be2926978b5eecac0ae6c5427d8c9a20d8a07886659131d675e522d9bb3/cimcb-1.1.0.tar.gz
BuildArch: noarch
Requires: python3-bokeh
Requires: python3-keras
Requires: python3-numpy
Requires: python3-pandas
Requires: python3-scipy
Requires: python3-scikit-learn
Requires: python3-statsmodels
Requires: python3-tensorflow
Requires: python3-tqdm
Requires: python3-xlrd
Requires: python3-joblib
%description
<img src="cimcb_logo.png" alt="drawing" width="400"/>
# cimcb
cimcb package containing the necessary tools for the statistical analysis of untargeted and targeted metabolomics data.
## Installation
### Dependencies
cimcb requires:
- Python (>=3.5)
- Bokeh (>=1.0.0)
- Keras
- NumPy (>=1.12)
- SciPy
- scikit-learn
- Statsmodels
- TensorFlow
- tqdm
### User installation
The recommend way to install cimcb and dependencies is to using ``conda``:
```console
conda install -c cimcb cimcb
```
or ``pip``:
```console
pip install cimcb
```
Alternatively, to install directly from github:
```console
pip install https://github.com/KevinMMendez/cimcb/archive/master.zip
```
### Tutorial
Open with Binders:
[](https://mybinder.org/v2/gh/KevinMMendez/BinderTutorial_Workflow/master?filepath=BinderTutorial_Workflow.ipynb)
### API
For futher detail on the usage refer to the docstring.
#### cimcb.model
- [PLS_SIMPLS](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/PLS_SIMPLS.py#L14-L36): Partial least-squares regression using the SIMPLS algorithm.
- [PCR](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/PCR.py#L8-L29): Principal component regression.
- [PCLR](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/PCLR.py#L8-L29): Principal component logistic regression.
- [RF](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/RF.py#L8-L9): Random forest.
- [SVM](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/SVM.py#L8-L9): Support Vector Machine.
- [RBF_NN](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/RBF_NN.py#L8-L9): Radial basis function neural network.
- [NN_LinearLinear](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/NN_LinearLinear.py#L7-L8): 2 Layer linear-linear neural network.
- [NN_LinearLogit](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/NN_LinearLogit.py#L7-L8): 2 Layer linear-logistic neural network.
- [NN_LogitLogit](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/NN_LogitLogit.py#L7-L8): 2 Layer logistic-logistic neural network.
#### cimcb.plot
- [boxplot](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/boxplot.py#L8-L18): Creates a boxplot using Bokeh.
- [distribution](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/distribution.py#L6-L16): Creates a distribution plot using Bokeh.
- [pca](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/pca.py#L10-L17): Creates a PCA scores and loadings plot using Bokeh.
- [permutation_test](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/permutation_test.py#L13-L27): Creates permutation test plots using Bokeh.
- [roc_plot](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/roc.py#L11-L24): Creates a rocplot using Bokeh.
- [scatter](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/scatter.py#L6-L16): Creates a scatterplot using Bokeh.
- [scatterCI](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/scatterCI.py#L7-L14): Creates a scatterCI plot using Bokeh.
#### cimcb.cross_val
- [kfold](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/cross_val/kfold.py#L14-L42): Exhaustitive search over param_dict calculating binary metrics.
#### cimcb.bootstrap
- [Perc](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/bootstrap/Perc.py#L6-L35): Returns bootstrap confidence intervals using the percentile boostrap interval.
- [BC](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/bootstrap/BC.py#L8-L37): Returns bootstrap confidence intervals using the bias-corrected boostrap interval.
- [BCA](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/bootstrap/BCA.py#L8-L36): Returns bootstrap confidence intervals using the bias-corrected and accelerated boostrap interval.
#### cimcb.utils
- [binary_metrics](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/binary_metrics.py#L5-L23): Return a dict of binary stats with the following metrics: R2, auc, accuracy, precision, sensitivity, specificity, and F1 score.
- [ci95_ellipse](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/ci95_ellipse.py#L6-L28): Construct a 95% confidence ellipse using PCA.
- [knnimpute](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/knnimpute.py#L7-L22): kNN missing value imputation using Euclidean distance.
- [load_dataXL](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/load_dataXL.py#L7-L29): Loads and validates the DataFile and PeakFile from an excel file.
- [nested_getattr](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/nested_getattr.py#L4-L5): getattr for nested attributes.
- [scale](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/scale.py#L4-L42): Scales x (which can include nans) with method: 'auto', 'pareto', 'vast', or 'level'.
- [table_check](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/table_check.py#L4-L17): Error checking for DataTable and PeakTable (used in load_dataXL).
- [univariate_2class](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/univariate_2class.py#L8-L35): Creates a table of univariate statistics (2 class).
- [wmean](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/wmean.py#L4-L19): Returns Weighted Mean. Ignores NaNs and handles infinite weights.
### License
cimcb is licensed under the ___ license.
### Authors
- Kevin Mendez
- [David Broadhurst](https://scholar.google.ca/citations?user=M3_zZwUAAAAJ&hl=en)
### Correspondence
Professor David Broadhurst, Director of the Centre for Integrative Metabolomics & Computation Biology at Edith Cowan University.
E-mail: d.broadhurst@ecu.edu.au
### Citation
If you would cite cimcb in a scientific publication, you can use the following: ___
%package -n python3-cimcb
Summary: This is a pre-release.
Provides: python-cimcb
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-cimcb
<img src="cimcb_logo.png" alt="drawing" width="400"/>
# cimcb
cimcb package containing the necessary tools for the statistical analysis of untargeted and targeted metabolomics data.
## Installation
### Dependencies
cimcb requires:
- Python (>=3.5)
- Bokeh (>=1.0.0)
- Keras
- NumPy (>=1.12)
- SciPy
- scikit-learn
- Statsmodels
- TensorFlow
- tqdm
### User installation
The recommend way to install cimcb and dependencies is to using ``conda``:
```console
conda install -c cimcb cimcb
```
or ``pip``:
```console
pip install cimcb
```
Alternatively, to install directly from github:
```console
pip install https://github.com/KevinMMendez/cimcb/archive/master.zip
```
### Tutorial
Open with Binders:
[](https://mybinder.org/v2/gh/KevinMMendez/BinderTutorial_Workflow/master?filepath=BinderTutorial_Workflow.ipynb)
### API
For futher detail on the usage refer to the docstring.
#### cimcb.model
- [PLS_SIMPLS](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/PLS_SIMPLS.py#L14-L36): Partial least-squares regression using the SIMPLS algorithm.
- [PCR](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/PCR.py#L8-L29): Principal component regression.
- [PCLR](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/PCLR.py#L8-L29): Principal component logistic regression.
- [RF](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/RF.py#L8-L9): Random forest.
- [SVM](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/SVM.py#L8-L9): Support Vector Machine.
- [RBF_NN](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/RBF_NN.py#L8-L9): Radial basis function neural network.
- [NN_LinearLinear](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/NN_LinearLinear.py#L7-L8): 2 Layer linear-linear neural network.
- [NN_LinearLogit](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/NN_LinearLogit.py#L7-L8): 2 Layer linear-logistic neural network.
- [NN_LogitLogit](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/NN_LogitLogit.py#L7-L8): 2 Layer logistic-logistic neural network.
#### cimcb.plot
- [boxplot](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/boxplot.py#L8-L18): Creates a boxplot using Bokeh.
- [distribution](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/distribution.py#L6-L16): Creates a distribution plot using Bokeh.
- [pca](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/pca.py#L10-L17): Creates a PCA scores and loadings plot using Bokeh.
- [permutation_test](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/permutation_test.py#L13-L27): Creates permutation test plots using Bokeh.
- [roc_plot](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/roc.py#L11-L24): Creates a rocplot using Bokeh.
- [scatter](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/scatter.py#L6-L16): Creates a scatterplot using Bokeh.
- [scatterCI](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/scatterCI.py#L7-L14): Creates a scatterCI plot using Bokeh.
#### cimcb.cross_val
- [kfold](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/cross_val/kfold.py#L14-L42): Exhaustitive search over param_dict calculating binary metrics.
#### cimcb.bootstrap
- [Perc](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/bootstrap/Perc.py#L6-L35): Returns bootstrap confidence intervals using the percentile boostrap interval.
- [BC](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/bootstrap/BC.py#L8-L37): Returns bootstrap confidence intervals using the bias-corrected boostrap interval.
- [BCA](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/bootstrap/BCA.py#L8-L36): Returns bootstrap confidence intervals using the bias-corrected and accelerated boostrap interval.
#### cimcb.utils
- [binary_metrics](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/binary_metrics.py#L5-L23): Return a dict of binary stats with the following metrics: R2, auc, accuracy, precision, sensitivity, specificity, and F1 score.
- [ci95_ellipse](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/ci95_ellipse.py#L6-L28): Construct a 95% confidence ellipse using PCA.
- [knnimpute](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/knnimpute.py#L7-L22): kNN missing value imputation using Euclidean distance.
- [load_dataXL](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/load_dataXL.py#L7-L29): Loads and validates the DataFile and PeakFile from an excel file.
- [nested_getattr](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/nested_getattr.py#L4-L5): getattr for nested attributes.
- [scale](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/scale.py#L4-L42): Scales x (which can include nans) with method: 'auto', 'pareto', 'vast', or 'level'.
- [table_check](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/table_check.py#L4-L17): Error checking for DataTable and PeakTable (used in load_dataXL).
- [univariate_2class](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/univariate_2class.py#L8-L35): Creates a table of univariate statistics (2 class).
- [wmean](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/wmean.py#L4-L19): Returns Weighted Mean. Ignores NaNs and handles infinite weights.
### License
cimcb is licensed under the ___ license.
### Authors
- Kevin Mendez
- [David Broadhurst](https://scholar.google.ca/citations?user=M3_zZwUAAAAJ&hl=en)
### Correspondence
Professor David Broadhurst, Director of the Centre for Integrative Metabolomics & Computation Biology at Edith Cowan University.
E-mail: d.broadhurst@ecu.edu.au
### Citation
If you would cite cimcb in a scientific publication, you can use the following: ___
%package help
Summary: Development documents and examples for cimcb
Provides: python3-cimcb-doc
%description help
<img src="cimcb_logo.png" alt="drawing" width="400"/>
# cimcb
cimcb package containing the necessary tools for the statistical analysis of untargeted and targeted metabolomics data.
## Installation
### Dependencies
cimcb requires:
- Python (>=3.5)
- Bokeh (>=1.0.0)
- Keras
- NumPy (>=1.12)
- SciPy
- scikit-learn
- Statsmodels
- TensorFlow
- tqdm
### User installation
The recommend way to install cimcb and dependencies is to using ``conda``:
```console
conda install -c cimcb cimcb
```
or ``pip``:
```console
pip install cimcb
```
Alternatively, to install directly from github:
```console
pip install https://github.com/KevinMMendez/cimcb/archive/master.zip
```
### Tutorial
Open with Binders:
[](https://mybinder.org/v2/gh/KevinMMendez/BinderTutorial_Workflow/master?filepath=BinderTutorial_Workflow.ipynb)
### API
For futher detail on the usage refer to the docstring.
#### cimcb.model
- [PLS_SIMPLS](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/PLS_SIMPLS.py#L14-L36): Partial least-squares regression using the SIMPLS algorithm.
- [PCR](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/PCR.py#L8-L29): Principal component regression.
- [PCLR](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/PCLR.py#L8-L29): Principal component logistic regression.
- [RF](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/RF.py#L8-L9): Random forest.
- [SVM](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/SVM.py#L8-L9): Support Vector Machine.
- [RBF_NN](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/RBF_NN.py#L8-L9): Radial basis function neural network.
- [NN_LinearLinear](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/NN_LinearLinear.py#L7-L8): 2 Layer linear-linear neural network.
- [NN_LinearLogit](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/NN_LinearLogit.py#L7-L8): 2 Layer linear-logistic neural network.
- [NN_LogitLogit](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/model/NN_LogitLogit.py#L7-L8): 2 Layer logistic-logistic neural network.
#### cimcb.plot
- [boxplot](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/boxplot.py#L8-L18): Creates a boxplot using Bokeh.
- [distribution](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/distribution.py#L6-L16): Creates a distribution plot using Bokeh.
- [pca](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/pca.py#L10-L17): Creates a PCA scores and loadings plot using Bokeh.
- [permutation_test](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/permutation_test.py#L13-L27): Creates permutation test plots using Bokeh.
- [roc_plot](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/roc.py#L11-L24): Creates a rocplot using Bokeh.
- [scatter](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/scatter.py#L6-L16): Creates a scatterplot using Bokeh.
- [scatterCI](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/plot/scatterCI.py#L7-L14): Creates a scatterCI plot using Bokeh.
#### cimcb.cross_val
- [kfold](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/cross_val/kfold.py#L14-L42): Exhaustitive search over param_dict calculating binary metrics.
#### cimcb.bootstrap
- [Perc](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/bootstrap/Perc.py#L6-L35): Returns bootstrap confidence intervals using the percentile boostrap interval.
- [BC](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/bootstrap/BC.py#L8-L37): Returns bootstrap confidence intervals using the bias-corrected boostrap interval.
- [BCA](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/bootstrap/BCA.py#L8-L36): Returns bootstrap confidence intervals using the bias-corrected and accelerated boostrap interval.
#### cimcb.utils
- [binary_metrics](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/binary_metrics.py#L5-L23): Return a dict of binary stats with the following metrics: R2, auc, accuracy, precision, sensitivity, specificity, and F1 score.
- [ci95_ellipse](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/ci95_ellipse.py#L6-L28): Construct a 95% confidence ellipse using PCA.
- [knnimpute](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/knnimpute.py#L7-L22): kNN missing value imputation using Euclidean distance.
- [load_dataXL](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/load_dataXL.py#L7-L29): Loads and validates the DataFile and PeakFile from an excel file.
- [nested_getattr](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/nested_getattr.py#L4-L5): getattr for nested attributes.
- [scale](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/scale.py#L4-L42): Scales x (which can include nans) with method: 'auto', 'pareto', 'vast', or 'level'.
- [table_check](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/table_check.py#L4-L17): Error checking for DataTable and PeakTable (used in load_dataXL).
- [univariate_2class](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/univariate_2class.py#L8-L35): Creates a table of univariate statistics (2 class).
- [wmean](https://github.com/KevinMMendez/cimcb/blob/master/cimcb/utils/wmean.py#L4-L19): Returns Weighted Mean. Ignores NaNs and handles infinite weights.
### License
cimcb is licensed under the ___ license.
### Authors
- Kevin Mendez
- [David Broadhurst](https://scholar.google.ca/citations?user=M3_zZwUAAAAJ&hl=en)
### Correspondence
Professor David Broadhurst, Director of the Centre for Integrative Metabolomics & Computation Biology at Edith Cowan University.
E-mail: d.broadhurst@ecu.edu.au
### Citation
If you would cite cimcb in a scientific publication, you can use the following: ___
%prep
%autosetup -n cimcb-1.1.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-cimcb -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.0-1
- Package Spec generated
|