summaryrefslogtreecommitdiff
path: root/python-clickmodels.spec
blob: 77f7aec842518fcea9537e14dfd79c085caa9a33 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
%global _empty_manifest_terminate_build 0
Name:		python-clickmodels
Version:	1.0.2
Release:	1
Summary:	Probabilistic models of user behavior on a search engine result page
License:	LICENSE
URL:		https://github.com/varepsilon/clickmodels
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/50/7c/c40372822c8177febc6593d5b785f069b3ab2134c1b509de98036f5c41e7/clickmodels-1.0.2.tar.gz
BuildArch:	noarch


%description
ClickModels is a small set of Python scripts for the user click models
initially developed at `Yandex <http://company.yandex.com>`__. A *Click
Model* is a probabilistic graphical model used to predict search engine
click data from past observations. This project is aimed to deal with
click models used in Information Retrieval (see next section) and
intended to be easy-to-read and easy-to-modify. If it's not, please let
me know how to improve it :)
If you are using this code for your research work, consider citing one
of our papers when appropriate (see
`References <https://github.com/varepsilon/clickmodels/#references>`__
section below).
If you are looking for a general-purpose framework to work with
probabilistic graphical models you might want to examine
`Infer.NET <http://research.microsoft.com/en-us/um/cambridge/projects/infernet/>`__.
It should also work with IronPython.

%package -n python3-clickmodels
Summary:	Probabilistic models of user behavior on a search engine result page
Provides:	python-clickmodels
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-clickmodels
ClickModels is a small set of Python scripts for the user click models
initially developed at `Yandex <http://company.yandex.com>`__. A *Click
Model* is a probabilistic graphical model used to predict search engine
click data from past observations. This project is aimed to deal with
click models used in Information Retrieval (see next section) and
intended to be easy-to-read and easy-to-modify. If it's not, please let
me know how to improve it :)
If you are using this code for your research work, consider citing one
of our papers when appropriate (see
`References <https://github.com/varepsilon/clickmodels/#references>`__
section below).
If you are looking for a general-purpose framework to work with
probabilistic graphical models you might want to examine
`Infer.NET <http://research.microsoft.com/en-us/um/cambridge/projects/infernet/>`__.
It should also work with IronPython.

%package help
Summary:	Development documents and examples for clickmodels
Provides:	python3-clickmodels-doc
%description help
ClickModels is a small set of Python scripts for the user click models
initially developed at `Yandex <http://company.yandex.com>`__. A *Click
Model* is a probabilistic graphical model used to predict search engine
click data from past observations. This project is aimed to deal with
click models used in Information Retrieval (see next section) and
intended to be easy-to-read and easy-to-modify. If it's not, please let
me know how to improve it :)
If you are using this code for your research work, consider citing one
of our papers when appropriate (see
`References <https://github.com/varepsilon/clickmodels/#references>`__
section below).
If you are looking for a general-purpose framework to work with
probabilistic graphical models you might want to examine
`Infer.NET <http://research.microsoft.com/en-us/um/cambridge/projects/infernet/>`__.
It should also work with IronPython.

%prep
%autosetup -n clickmodels-1.0.2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-clickmodels -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.2-1
- Package Spec generated