diff options
| author | CoprDistGit <infra@openeuler.org> | 2023-05-29 11:12:02 +0000 |
|---|---|---|
| committer | CoprDistGit <infra@openeuler.org> | 2023-05-29 11:12:02 +0000 |
| commit | e43c85b44a33f4c6079fee82e07d148e9b1453f2 (patch) | |
| tree | 420ded7b429349be6591d40083c6332a63c69734 | |
| parent | 74d85f2faf95ced90c25dd62e08f1d1b416e7b9c (diff) | |
automatic import of python-cluster
| -rw-r--r-- | .gitignore | 1 | ||||
| -rw-r--r-- | python-cluster.spec | 111 | ||||
| -rw-r--r-- | sources | 1 |
3 files changed, 113 insertions, 0 deletions
@@ -0,0 +1 @@ +/cluster-1.4.1.post3.linux-x86_64.tar.gz diff --git a/python-cluster.spec b/python-cluster.spec new file mode 100644 index 0000000..b5012e3 --- /dev/null +++ b/python-cluster.spec @@ -0,0 +1,111 @@ +%global _empty_manifest_terminate_build 0 +Name: python-cluster +Version: 1.4.1.post3 +Release: 1 +Summary: please add a summary manually as the author left a blank one +License: LGPL +URL: https://github.com/exhuma/python-cluster +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/78/6e/ce37ab112e7f704df2c0b61cee544c3b1d49c54b9e43a1beff03a4a03d71/cluster-1.4.1.post3.linux-x86_64.tar.gz +BuildArch: noarch + + +%description +python-cluster is a "simple" package that allows to create several groups +(clusters) of objects from a list. It's meant to be flexible and able to +cluster any object. To ensure this kind of flexibility, you need not only to +supply the list of objects, but also a function that calculates the similarity +between two of those objects. For simple datatypes, like integers, this can be +as simple as a subtraction, but more complex calculations are possible. Right +now, it is possible to generate the clusters using a hierarchical clustering +and the popular K-Means algorithm. For the hierarchical algorithm there are +different "linkage" (single, complete, average and uclus) methods available. +Algorithms are based on the document found at +http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial_html/ + The above site is no longer avaialble, but you can still view it in the + internet archive at: + https://web.archive.org/web/20070912040206/http://home.dei.polimi.it//matteucc/Clustering/tutorial_html/ + +%package -n python3-cluster +Summary: please add a summary manually as the author left a blank one +Provides: python-cluster +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-cluster +python-cluster is a "simple" package that allows to create several groups +(clusters) of objects from a list. It's meant to be flexible and able to +cluster any object. To ensure this kind of flexibility, you need not only to +supply the list of objects, but also a function that calculates the similarity +between two of those objects. For simple datatypes, like integers, this can be +as simple as a subtraction, but more complex calculations are possible. Right +now, it is possible to generate the clusters using a hierarchical clustering +and the popular K-Means algorithm. For the hierarchical algorithm there are +different "linkage" (single, complete, average and uclus) methods available. +Algorithms are based on the document found at +http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial_html/ + The above site is no longer avaialble, but you can still view it in the + internet archive at: + https://web.archive.org/web/20070912040206/http://home.dei.polimi.it//matteucc/Clustering/tutorial_html/ + +%package help +Summary: Development documents and examples for cluster +Provides: python3-cluster-doc +%description help +python-cluster is a "simple" package that allows to create several groups +(clusters) of objects from a list. It's meant to be flexible and able to +cluster any object. To ensure this kind of flexibility, you need not only to +supply the list of objects, but also a function that calculates the similarity +between two of those objects. For simple datatypes, like integers, this can be +as simple as a subtraction, but more complex calculations are possible. Right +now, it is possible to generate the clusters using a hierarchical clustering +and the popular K-Means algorithm. For the hierarchical algorithm there are +different "linkage" (single, complete, average and uclus) methods available. +Algorithms are based on the document found at +http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial_html/ + The above site is no longer avaialble, but you can still view it in the + internet archive at: + https://web.archive.org/web/20070912040206/http://home.dei.polimi.it//matteucc/Clustering/tutorial_html/ + +%prep +%autosetup -n cluster-1.4.1.post3 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-cluster -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Mon May 29 2023 Python_Bot <Python_Bot@openeuler.org> - 1.4.1.post3-1 +- Package Spec generated @@ -0,0 +1 @@ +266d943ab9c0623bee189e1532bedbeb cluster-1.4.1.post3.linux-x86_64.tar.gz |
