summaryrefslogtreecommitdiff
path: root/python-cocotbext-axi.spec
blob: 0d197439b6724ba84741d16677d2477dab7d3722 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
%global _empty_manifest_terminate_build 0
Name:		python-cocotbext-axi
Version:	0.1.24
Release:	1
Summary:	AXI, AXI lite, and AXI stream modules for cocotb
License:	MIT
URL:		https://github.com/alexforencich/cocotbext-axi
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/d3/1a/9404e927ae29608dee29717074a58ddb4999679e310de9a5ff661fd75d61/cocotbext-axi-0.1.24.tar.gz
BuildArch:	noarch

Requires:	python3-cocotb
Requires:	python3-cocotb-bus
Requires:	python3-pytest
Requires:	python3-cocotb-test

%description
# AXI interface modules for Cocotb

[![Build Status](https://github.com/alexforencich/cocotbext-axi/workflows/Regression%20Tests/badge.svg?branch=master)](https://github.com/alexforencich/cocotbext-axi/actions/)
[![codecov](https://codecov.io/gh/alexforencich/cocotbext-axi/branch/master/graph/badge.svg)](https://codecov.io/gh/alexforencich/cocotbext-axi)
[![PyPI version](https://badge.fury.io/py/cocotbext-axi.svg)](https://pypi.org/project/cocotbext-axi)
[![Downloads](https://pepy.tech/badge/cocotbext-axi)](https://pepy.tech/project/cocotbext-axi)

GitHub repository: https://github.com/alexforencich/cocotbext-axi

## Introduction

AXI, AXI lite, and AXI stream simulation models for [cocotb](https://github.com/cocotb/cocotb).

## Installation

Installation from pip (release version, stable):

    $ pip install cocotbext-axi

Installation from git (latest development version, potentially unstable):

    $ pip install https://github.com/alexforencich/cocotbext-axi/archive/master.zip

Installation for active development:

    $ git clone https://github.com/alexforencich/cocotbext-axi
    $ pip install -e cocotbext-axi

## Documentation and usage examples

See the `tests` directory, [verilog-axi](https://github.com/alexforencich/verilog-axi), and [verilog-axis](https://github.com/alexforencich/verilog-axis) for complete testbenches using these modules.

### AXI and AXI lite master

The `AxiMaster` and `AxiLiteMaster` classes implement AXI masters and are capable of generating read and write operations against AXI slaves.  Requested operations will be split and aligned according to the AXI specification.  The `AxiMaster` module is capable of generating narrow bursts, handling multiple in-flight operations, and handling reordering and interleaving in responses across different transaction IDs.  `AxiMaster` and `AxiLiteMaster` and related objects all extend `Region`, so they can be attached to `AddressSpace` objects to handle memory operations in the specified region.

The `AxiMaster` is a wrapper around `AxiMasterWrite` and `AxiMasterRead`.  Similarly, `AxiLiteMaster` is a wrapper around `AxiLiteMasterWrite` and `AxiLiteMasterRead`.  If a read-only or write-only interface is required instead of a full interface, use the corresponding read-only or write-only variant, the usage and API are exactly the same.

To use these modules, import the one you need and connect it to the DUT:

    from cocotbext.axi import AxiBus, AxiMaster

    axi_master = AxiMaster(AxiBus.from_prefix(dut, "s_axi"), dut.clk, dut.rst)

The first argument to the constructor accepts an `AxiBus` or `AxiLiteBus` object, as appropriate.  These objects are containers for the interface signals and include class methods to automate connections.

Once the module is instantiated, read and write operations can be initiated in a couple of different ways.

First, operations can be carried out with async blocking `read()`, `write()`, and their associated word-access wrappers.  Multiple concurrent operations started from different coroutines are handled correctly, with results returned in the order that the operations complete.  For example:

    await axi_master.write(0x0000, b'test')
    data = await axi_master.read(0x0000, 4)

Additional parameters can be specified to control sideband signals and burst settings.  The transfer will be split into one or more bursts according to the AXI specification.  All bursts generated from the same call to `read()` or `write()` will use the same ID, which will be automatically generated if not specified.  `read()` and `write()` return `namedtuple` objects containing _address_, _data_ or _length_, and _resp_.  This is the preferred style, and this is the only style supported by the word-access wrappers.

Alternatively, operations can be initiated with non-blocking `init_read()` and `init_write()`.  These functions return `Event` objects which are triggered when the operation completes, and the result can be retrieved from `Event.data`.  For example:

    write_op = axi_master.init_write(0x0000, b'test')
    await write_op.wait()
    resp = write_op.data
    read_op = axi_master.init_read(0x0000, 4)
    await read_op.wait()
    resp = read_op.data

With this method, it is possible to start multiple concurrent operations from the same coroutine.  It is also possible to use the events with `Combine`, `First`, and `with_timeout`.

#### `AxiMaster` and `AxiLiteMaster` constructor parameters

* _bus_: `AxiBus` or `AxiLiteBus` object containing AXI interface signals
* _clock_: clock signal
* _reset_: reset signal (optional)
* _reset_active_level_: reset active level (optional, default `True`)

#### Additional parameters for `AxiMaster`

* _max_burst_len_: maximum burst length in cycles, range 1-256, default 256.

#### Methods

* `init_read(address, length, ...)`: initiate reading _length_ bytes, starting at _address_.  Returns an `Event` object.
* `init_write(address, data, ...)`: initiate writing _data_ (bytes), starting from _address_.  Returns an `Event` object.
* `idle()`: returns _True_ when there are no outstanding operations in progress
* `wait()`: blocking wait until all outstanding operations complete
* `wait_read()`: wait until all outstanding read operations complete
* `wait_write()`: wait until all outstanding write operations complete
* `read(address, length, ...)`: read _length_ bytes, starting at _address_
* `read_words(address, count, byteorder='little', ws=2, ...)`: read _count_ _ws_-byte words, starting at _address_
* `read_dwords(address, count, byteorder='little', ...)`: read _count_ 4-byte dwords, starting at _address_
* `read_qwords(address, count, byteorder='little', ...)`: read _count_ 8-byte qwords, starting at _address_
* `read_byte(address, ...)`: read single byte at _address_
* `read_word(address, byteorder='little', ws=2, ...)`: read single _ws_-byte word at _address_
* `read_dword(address, byteorder='little', ...)`: read single 4-byte dword at _address_
* `read_qword(address, byteorder='little', ...)`: read single 8-byte qword at _address_
* `write(address, data, ...)`: write _data_ (bytes), starting at _address_
* `write_words(address, data, byteorder='little', ws=2, ...)`: write _data_ (_ws_-byte words), starting at _address_
* `write_dwords(address, data, byteorder='little', ...)`: write _data_ (4-byte dwords), starting at _address_
* `write_qwords(address, data, byteorder='little', ...)`: write _data_ (8-byte qwords), starting at _address_
* `write_byte(address, data, ...)`: write single byte at _address_
* `write_word(address, data, byteorder='little', ws=2, ...)`: write single _ws_-byte word at _address_
* `write_dword(address, data, byteorder='little', ...)`: write single 4-byte dword at _address_
* `write_qword(address, data, byteorder='little', ...)`: write single 8-byte qword at _address_

#### Additional optional arguments for `AxiMaster`

* _arid_,_awid_: AXI ID for bursts, default automatically assigned
* _burst_: AXI burst type, default `AxiBurstType.INCR`
* _size_: AXI burst size, default maximum supported by interface
* _lock_: AXI lock type, default `AxiLockType.NORMAL`
* _cache_: AXI cache field, default `0b0011`
* _prot_: AXI protection flags, default `AxiProt.NONSECURE`
* _qos_: AXI QOS field, default `0`
* _region_: AXI region field, default `0`
* _user_: AXI user signal (awuser/aruser), default `0`
* _wuser_: AXI wuser signal, default `0` (write-related methods only)
* _event_: `Event` object used to wait on and retrieve result for specific operation, default `None`.  The event will be triggered when the operation completes and the result returned via `Event.data`.  (`init_read()` and `init_write()` only)

#### Additional optional arguments for `AxiLiteMaster`

* _prot_: AXI protection flags, default `AxiProt.NONSECURE`
* _event_: `Event` object used to wait on and retrieve result for specific operation, default `None`.  The event will be triggered when the operation completes and the result returned via `Event.data`.  (`init_read()` and `init_write()` only)

#### `AxiBus` and `AxiLiteBus` objects

The `AxiBus`, `AxiLiteBus`, and related objects are containers for the interface signals.  These hold instances of bus objects for the individual channels, which are currently extensions of `cocotb_bus.bus.Bus`.  Class methods `from_entity` and `from_prefix` are provided to facilitate signal name matching.  For AXI interfaces use `AxiBus`, `AxiReadBus`, or `AxiWriteBus`, as appropriate.  For AXI lite interfaces, use `AxiLiteBus`, `AxiLiteReadBus`, or `AxiLiteWriteBus`, as appropriate.

### AXI and AXI lite slave

The `AxiSlave` and `AxiLiteSlave` classes implement AXI slaves and are capable of completing read and write operations from upstream AXI masters.  The `AxiSlave` module is capable of handling narrow bursts.  These modules can either be used to perform memory reads and writes on a `MemoryInterface` on behalf of the DUT, or they can be extended to implement customized functionality.

The `AxiSlave` is a wrapper around `AxiSlaveWrite` and `AxiSlaveRead`.  Similarly, `AxiLiteSlave` is a wrapper around `AxiLiteSlaveWrite` and `AxiLiteSlaveRead`.  If a read-only or write-only interface is required instead of a full interface, use the corresponding read-only or write-only variant, the usage and API are exactly the same.

To use these modules, import the one you need and connect it to the DUT:

    from cocotbext.axi import AxiBus, AxiSlave, MemoryRegion

    axi_slave = AxiSlave(AxiBus.from_prefix(dut, "m_axi"), dut.clk, dut.rst)
    region = MemoryRegion(2**axi_slave.read_if.address_width)
    axi_slave.target = region

The first argument to the constructor accepts an `AxiBus` or `AxiLiteBus` object.  These objects are containers for the interface signals and include class methods to automate connections.

It is also possible to extend these modules; operation can be customized by overriding the internal `_read()` and `_write()` methods.  See `AxiRam` and `AxiLiteRam` for an example.

#### `AxiSlave` and `AxiLiteSlave` constructor parameters

* _bus_: `AxiBus` or `AxiLiteBus` object containing AXI interface signals
* _clock_: clock signal
* _reset_: reset signal (optional)
* _reset_active_level_: reset active level (optional, default `True`)
* _target_: target region (optional, default `None`)

#### Attributes:

* _target_: target region

### AXI and AXI lite RAM

The `AxiRam` and `AxiLiteRam` classes implement AXI RAMs and are capable of completing read and write operations from upstream AXI masters.  The `AxiRam` module is capable of handling narrow bursts.  These modules are extensions of the corresponding `AxiSlave` and `AxiLiteSlave` modules.  Internally, `SparseMemory` is used to support emulating very large memories.

The `AxiRam` is a wrapper around `AxiRamWrite` and `AxiRamRead`.  Similarly, `AxiLiteRam` is a wrapper around `AxiLiteRamWrite` and `AxiLiteRamRead`.  If a read-only or write-only interface is required instead of a full interface, use the corresponding read-only or write-only variant, the usage and API are exactly the same.

To use these modules, import the one you need and connect it to the DUT:

    from cocotbext.axi import AxiBus, AxiRam

    axi_ram = AxiRam(AxiBus.from_prefix(dut, "m_axi"), dut.clk, dut.rst, size=2**32)

The first argument to the constructor accepts an `AxiBus` or `AxiLiteBus` object.  These objects are containers for the interface signals and include class methods to automate connections.

Once the module is instantiated, the memory contents can be accessed in a couple of different ways.  First, the `mmap` object can be accessed directly via the `mem` attribute.  Second, `read()`, `write()`, and various word-access wrappers are available.  Hex dump helper methods are also provided for debugging.  For example:

    axi_ram.write(0x0000, b'test')
    data = axi_ram.read(0x0000, 4)
    axi_ram.hexdump(0x0000, 4, prefix="RAM")

Multi-port memories can be constructed by passing the `mem` object of the first instance to the other instances.  For example, here is how to create a four-port RAM:

    axi_ram_p1 = AxiRam(AxiBus.from_prefix(dut, "m00_axi"), dut.clk, dut.rst, size=2**32)
    axi_ram_p2 = AxiRam(AxiBus.from_prefix(dut, "m01_axi"), dut.clk, dut.rst, mem=axi_ram_p1.mem)
    axi_ram_p3 = AxiRam(AxiBus.from_prefix(dut, "m02_axi"), dut.clk, dut.rst, mem=axi_ram_p1.mem)
    axi_ram_p4 = AxiRam(AxiBus.from_prefix(dut, "m03_axi"), dut.clk, dut.rst, mem=axi_ram_p1.mem)

#### `AxiRam` and `AxiLiteRam` constructor parameters

* _bus_: `AxiBus` or `AxiLiteBus` object containing AXI interface signals
* _clock_: clock signal
* _reset_: reset signal (optional)
* _reset_active_level_: reset active level (optional, default `True`)
* _size_: memory size in bytes (optional, default `2**64`)
* _mem_: `mmap` or `SparseMemory` backing object to use (optional, overrides _size_)

#### Attributes:

* _mem_: directly access shared `mmap` or `SparseMemory` backing object

#### Methods

* `read(address, length)`: read _length_ bytes, starting at _address_
* `read_words(address, count, byteorder='little', ws=2)`: read _count_ _ws_-byte words, starting at _address_
* `read_dwords(address, count, byteorder='little')`: read _count_ 4-byte dwords, starting at _address_
* `read_qwords(address, count, byteorder='little')`: read _count_ 8-byte qwords, starting at _address_
* `read_byte(address)`: read single byte at _address_
* `read_word(address, byteorder='little', ws=2)`: read single _ws_-byte word at _address_
* `read_dword(address, byteorder='little')`: read single 4-byte dword at _address_
* `read_qword(address, byteorder='little')`: read single 8-byte qword at _address_
* `write(address, data)`: write _data_ (bytes), starting at _address_
* `write_words(address, data, byteorder='little', ws=2)`: write _data_ (_ws_-byte words), starting at _address_
* `write_dwords(address, data, byteorder='little')`: write _data_ (4-byte dwords), starting at _address_
* `write_qwords(address, data, byteorder='little')`: write _data_ (8-byte qwords), starting at _address_
* `write_byte(address, data)`: write single byte at _address_
* `write_word(address, data, byteorder='little', ws=2)`: write single _ws_-byte word at _address_
* `write_dword(address, data, byteorder='little')`: write single 4-byte dword at _address_
* `write_qword(address, data, byteorder='little')`: write single 8-byte qword at _address_
* `hexdump(address, length, prefix='')`: print hex dump of _length_ bytes starting from _address_, prefix lines with optional _prefix_
* `hexdump_line(address, length, prefix='')`: return hex dump (list of str) of _length_ bytes starting from _address_, prefix lines with optional _prefix_
* `hexdump_str(address, length, prefix='')`: return hex dump (str) of _length_ bytes starting from _address_, prefix lines with optional _prefix_

### AXI stream

The `AxiStreamSource`, `AxiStreamSink`, and `AxiStreamMonitor` classes can be used to drive, receive, and monitor traffic on AXI stream interfaces.  The `AxiStreamSource` drives all signals except for `tready` and can be used to drive AXI stream traffic into a design.  The `AxiStreamSink` drives the `tready` line only and as such can receive AXI stream traffic and exert backpressure.  The `AxiStreamMonitor` drives no signals and as such can be connected to AXI stream interfaces anywhere within a design to passively monitor traffic.

To use these modules, import the one you need and connect it to the DUT:

    from cocotbext.axi import (AxiStreamBus, AxiStreamSource, AxiStreamSink, AxiStreamMonitor)

    axis_source = AxiStreamSource(AxiStreamBus.from_prefix(dut, "s_axis"), dut.clk, dut.rst)
    axis_sink = AxiStreamSink(AxiStreamBus.from_prefix(dut, "m_axis"), dut.clk, dut.rst)
    axis_mon= AxiStreamMonitor(AxiStreamBus.from_prefix(dut.inst, "int_axis"), dut.clk, dut.rst)

The first argument to the constructor accepts an `AxiStreamBus` object.  This object is a container for the interface signals and includes class methods to automate connections.

To send data into a design with an `AxiStreamSource`, call `send()`/`send_nowait()` or `write()`/`write_nowait()`.  Accepted data types are iterables or `AxiStreamFrame` objects.  Optionally, call `wait()` to wait for the transmit operation to complete.  Example:

    await axis_source.send(b'test data')
    # wait for operation to complete (optional)
    await axis_source.wait()

It is also possible to wait for the transmission of a specific frame to complete by passing an event in the tx_complete field of the `AxiStreamFrame` object, and then awaiting the event.  The frame, with simulation time fields set, will be returned in the event data.  Example:

    frame = AxiStreamFrame(b'test data', tx_complete=Event())
    await axis_source.send(frame)
    await frame.tx_complete.wait()
    print(frame.tx_complete.data.sim_time_start)

To receive data with an `AxiStreamSink` or `AxiStreamMonitor`, call `recv()`/`recv_nowait()` or `read()`/`read_nowait()`.  Optionally call `wait()` to wait for new receive data.  `recv()` is intended for use with a frame-oriented interface, and by default compacts `AxiStreamFrame`s before returning them.  `read()` is intended for non-frame-oriented streams.  Calling `read()` internally calls `recv()` for all frames currently in the queue, then compacts and coalesces `tdata` from all frames into a separate read queue, from which read data is returned.  All sideband data is discarded.

    data = await axis_sink.recv()

#### Signals

* `tdata`: data, required
* `tvalid`: qualifies all other signals; optional, assumed `1` when absent
* `tready`: indicates sink is ready for data; optional, assumed `1` when absent
* `tlast`: marks the last cycle of a frame; optional, assumed `1` when absent
* `tkeep`: qualifies data byte, data bus width must be evenly divisible by `tkeep` signal width; optional, assumed `1` when absent
* `tid`: ID signal, can be used for routing; optional, assumed `0` when absent
* `tdest`: destination signal, can be used for routing; optional, assumed `0` when absent
* `tuser`: additional user data; optional, assumed `0` when absent

#### Constructor parameters:

* _bus_: `AxiStreamBus` object containing AXI stream interface signals
* _clock_: clock signal
* _reset_: reset signal (optional)
* _reset_active_level_: reset active level (optional, default `True`)
* _byte_size_: byte size (optional)
* _byte_lanes_: byte lane count (optional)

Note: _byte_size_, _byte_lanes_, `len(tdata)`, and `len(tkeep)` are all related, in that _byte_lanes_ is set from `tkeep` if it is connected, and `byte_size*byte_lanes == len(tdata)`.  So, if `tkeep` is connected, both _byte_size_ and _byte_lanes_ will be computed internally and cannot be overridden.  If `tkeep` is not connected, then either _byte_size_ or _byte_lanes_ can be specified, and the other will be computed such that `byte_size*byte_lanes == len(tdata)`.

#### Attributes:

* _pause_: stall the interface (deassert `tready` or `tvalid`) (source/sink only)
* _queue_occupancy_bytes_: number of bytes in queue (all)
* _queue_occupancy_frames_: number of frames in queue (all)
* _queue_occupancy_limit_bytes_: max number of bytes in queue allowed before backpressure is applied (source/sink only)
* _queue_occupancy_limit_frames_: max number of frames in queue allowed before backpressure is applied (source/sink only)

#### Methods

* `send(frame)`: send _frame_ (blocking) (source)
* `send_nowait(frame)`: send _frame_ (non-blocking) (source)
* `write(data)`: send _data_ (alias of send) (blocking) (source)
* `write_nowait(data)`: send _data_ (alias of send_nowait) (non-blocking) (source)
* `recv(compact=True)`: receive a frame as a `GmiiFrame` (blocking) (sink)
* `recv_nowait(compact=True)`: receive a frame as a `GmiiFrame` (non-blocking) (sink)
* `read(count)`: read _count_ bytes from buffer (blocking) (sink/monitor)
* `read_nowait(count)`: read _count_ bytes from buffer (non-blocking) (sink/monitor)
* `count()`: returns the number of items in the queue (all)
* `empty()`: returns _True_ if the queue is empty (all)
* `full()`: returns _True_ if the queue occupancy limits are met (source/sink)
* `idle()`: returns _True_ if no transfer is in progress (all) or if the queue is not empty (source)
* `clear()`: drop all data in queue (all)
* `wait()`: wait for idle (source)
* `wait(timeout=0, timeout_unit='ns')`: wait for frame received (sink)
* `set_pause_generator(generator)`: set generator for pause signal, generator will be advanced on every clock cycle (source/sink)
* `clear_pause_generator()`: remove generator for pause signal (source/sink)

#### `AxiStreamBus` object

The `AxiStreamBus` object is a container for the interface signals.  Currently, it is an extension of `cocotb.bus.Bus`.  Class methods `from_entity` and `from_prefix` are provided to facilitate signal name matching.

#### `AxiStreamFrame` object

The `AxiStreamFrame` object is a container for a frame to be transferred via AXI stream.  The `tdata` field contains the packet data in the form of a list of bytes, which is either a `bytearray` if the byte size is 8 bits or a `list` of `int`s otherwise.  `tkeep`, `tid`, `tdest`, and `tuser` can either be `None`, an `int`, or a `list` of `int`s.

Attributes:

* `tdata`: bytes, bytearray, or list
* `tkeep`: tkeep field, optional; list, each entry qualifies the corresponding entry in `tdata`.  Can be used to insert gaps on the source side.
* `tid`: tid field, optional; int or list with one entry per `tdata`, last value used per cycle when sending.
* `tdest`: tdest field, optional; int or list with one entry per `tdata`, last value used per cycle when sending.
* `tuser`: tuser field, optional; int or list with one entry per `tdata`, last value used per cycle when sending.
* `sim_time_start`: simulation time of first transfer cycle of frame.
* `sim_time_end`: simulation time of last transfer cycle of frame.
* `tx_complete`: event or callable triggered when frame is transmitted.

Methods:

* `normalize()`: pack `tkeep`, `tid`, `tdest`, and `tuser` to the same length as `tdata`, replicating last element if necessary, initialize `tkeep` to list of `1` and `tid`, `tdest`, and `tuser` to list of `0` if not specified.
* `compact()`: remove `tdata`, `tid`, `tdest`, and `tuser` values based on `tkeep`, remove `tkeep`, compact `tid`, `tdest`, and `tuser` to an int if all values are identical.

### Address space abstraction

The address space abstraction provides a framework for cross-connecting multiple memory-mapped interfaces for testing components that interface with complex systems, including components with DMA engines.

`MemoryInterface` is the base class for all components in the address space abstraction.  `MemoryInterface` provides the core `read()` and `write()` methods, which implement bounds checking, as well as word-access wrappers.  Methods for creating `Window` and `WindowPool` objects are also provided.  The function `get_absolute_address()` translates addresses to the system address space.  `MemoryInterface` can be extended to implement custom functionality by overriding `_read()` and `_write()`.

`Window` objects represent views onto a parent address space with some length and offset.  `read()` and `write()` operations on a `Window` are translated to the equivalent operations on the parent address space.  Multiple `Window` instances can overlap and access the same portion of address space.

`WindowPool` provides a method for dynamically allocating windows from a section of address space.  It uses a standard memory management algorithm to provide naturally-aligned `Window` objects of the requested size.

`Region` is the base class for all components which implement a portion of address space.  `Region` objects can be registered with `AddressSpace` objects to handle `read()` and `write()` operations in a specified region.  `Region` can be extended by components that implement a portion of address space.

`MemoryRegion` is an extension of `Region` that uses an `mmap` instance to handle memory operations.  `MemoryRegion` also provides hex dump methods as well as indexing and slicing.

`SparseMemoryRegion` is similar to `MemoryRegion` but is backed by `SparseMemory` instead of `mmap` and as such can emulate extremely large regions of address space.

`PeripheralRegion` is an extension of `Region` that can wrap another object that implements `read()` and `write()`, as an alternative to extending `Region`.

`AddressSpace` is the core object for handling address spaces.  `Region` objects can be registered with `AddressSpace` with specified base address, size, and offset.  The `AddressSpace` object will then direct `read()` and `write()` operations to the appropriate `Region`s, splitting requests appropriately when necessary and translating addresses.  Regions registered with `offset` other than `None` are translated such that accesses to base address + N map to N + offset.  Regions registered with an `offset` of `None` are not translated.  `Region` objects registered with the same `AddressSpace` cannot overlap, however the same `Region` can be registered multiple times.  `AddressSpace` also provides a method for creating `Pool` objects.

`Pool` is an extension of `AddressSpace` that supports dynamic allocation of `MemoryRegion`s.  It uses a standard memory management algorithm to provide naturally-aligned `MemoryRegion` objects of the requested size.

#### Example

This is a simple example that shows how the address space abstraction components can be used to connect a DUT to a simulated host system, including simulated RAM, an AXI interface from the DUT for DMA, and an AXI lite interface to the DUT for control.

    from cocotbext.axi import AddressSpace, SparseMemoryRegion
    from cocotbext.axi import AxiBus, AxiLiteMaster, AxiSlave

    # system address space
    address_space = AddressSpace(2**32)

    # RAM
    ram = SparseMemoryRegion(2**24)
    address_space.register_region(ram, 0x0000_0000)
    ram_pool = address_space.create_window_pool(0x0000_0000, 2**20)

    # DUT control register interface
    axil_master = AxiLiteMaster(AxiLiteBus.from_prefix(dut, "s_axil_ctrl"), dut.clk, dut.rst)
    address_space.register_region(axil_master, 0x8000_0000)
    ctrl_regs = address_space.create_window(0x8000_0000, axil_master.size)

    # DMA from DUT
    axi_slave = AxiSlave(AxiBus.from_prefix(dut, "m_axi_dma"), dut.clk, dut.rst, target=address_space)

    # exercise DUT DMA functionality
    src_block = ram_pool.alloc_window(1024)
    dst_block = ram_pool.alloc_window(1024)

    test_data = b'test data'
    await src_block.write(0, test_data)

    await ctrl_regs.write_dword(DMA_SRC_ADDR, src_block.get_absolute_address(0))
    await ctrl_regs.write_dword(DMA_DST_ADDR, dst_block.get_absolute_address(0))
    await ctrl_regs.write_dword(DMA_LEN, len(test_data))
    await ctrl_regs.write_dword(DMA_CONTROL, 1)

    while await ctrl_regs.read_dword(DMA_STATUS) == 0:
        pass

    assert await dst_block.read(0, len(test_data)) == test_data

### AXI signals

* Write address channel
    * `awid`: transaction ID
    * `awaddr`: address
    * `awlen`: burst length (cycles)
    * `awsize`: burst size (bytes/cycle)
    * `awburst`: burst type
    * `awlock`: lock type
    * `awcache`: cache control
    * `awprot`: protection bits
    * `awqos`: QoS field
    * `awregion`: region field
    * `awuser`: additional user sideband data
    * `awvalid`: valid signal, qualifies all channel fields
    * `awready`: ready signal, back-pressure from sink
* Write data channel
    * `wdata`: write data
    * `wstrb`: write strobe
    * `wlast`: end of burst flag
    * `wuser`: additional user sideband data
    * `wvalid`: valid signal, qualifies all channel fields
    * `wready`: ready signal, back-pressure from sink
* Write response channel
    * `bid`: transaction ID
    * `bresp`: write response
    * `buser`: additional user sideband data
    * `bvalid`: valid signal, qualifies all channel fields
    * `bready`: ready signal, back-pressure from sink
* Read address channel
    * `arid`: transaction ID
    * `araddr`: address
    * `arlen`: burst length (cycles)
    * `arsize`: burst size (bytes/cycle)
    * `arburst`: burst type
    * `arlock`: lock type
    * `arcache`: cache control
    * `arprot`: protection bits
    * `arqos`: QoS field
    * `arregion`: region field
    * `aruser`: additional user sideband data
    * `arvalid`: valid signal, qualifies all channel fields
    * `arready`: ready signal, back-pressure from sink
* Read data channel
    * `rid`: transaction ID
    * `rdata`: read data
    * `rresp`: read response
    * `rlast`: end of burst flag
    * `ruser`: additional user sideband data
    * `rvalid`: valid signal, qualifies all channel fields
    * `rready`: ready signal, back-pressure from sink

### AXI lite signals

* Write address channel
    * `awaddr`: address
    * `awprot`: protection bits
    * `awvalid`: valid signal, qualifies all channel fields
    * `awready`: ready signal, back-pressure from sink
* Write data channel
    * `wdata`: write data
    * `wstrb`: write strobe
    * `wvalid`: valid signal, qualifies all channel fields
    * `wready`: ready signal, back-pressure from sink
* Write response channel
    * `bresp`: write response
    * `bvalid`: valid signal, qualifies all channel fields
    * `bready`: ready signal, back-pressure from sink
* Read address channel
    * `araddr`: address
    * `arprot`: protection bits
    * `arvalid`: valid signal, qualifies all channel fields
    * `arready`: ready signal, back-pressure from sink
* Read data channel
    * `rdata`: read data
    * `rresp`: read response
    * `rvalid`: valid signal, qualifies all channel fields
    * `rready`: ready signal, back-pressure from sink

### AXI stream signals

* `tdata`: data
* `tvalid`: qualifies all other signals
* `tready`: indicates sink is ready for data
* `tlast`: marks the last cycle of a frame
* `tkeep`: qualifies data bytes in `tdata`
* `tid`: ID signal, can be used for routing
* `tdest`: destination signal, can be used for routing
* `tuser`: additional sideband data


%package -n python3-cocotbext-axi
Summary:	AXI, AXI lite, and AXI stream modules for cocotb
Provides:	python-cocotbext-axi
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-cocotbext-axi
# AXI interface modules for Cocotb

[![Build Status](https://github.com/alexforencich/cocotbext-axi/workflows/Regression%20Tests/badge.svg?branch=master)](https://github.com/alexforencich/cocotbext-axi/actions/)
[![codecov](https://codecov.io/gh/alexforencich/cocotbext-axi/branch/master/graph/badge.svg)](https://codecov.io/gh/alexforencich/cocotbext-axi)
[![PyPI version](https://badge.fury.io/py/cocotbext-axi.svg)](https://pypi.org/project/cocotbext-axi)
[![Downloads](https://pepy.tech/badge/cocotbext-axi)](https://pepy.tech/project/cocotbext-axi)

GitHub repository: https://github.com/alexforencich/cocotbext-axi

## Introduction

AXI, AXI lite, and AXI stream simulation models for [cocotb](https://github.com/cocotb/cocotb).

## Installation

Installation from pip (release version, stable):

    $ pip install cocotbext-axi

Installation from git (latest development version, potentially unstable):

    $ pip install https://github.com/alexforencich/cocotbext-axi/archive/master.zip

Installation for active development:

    $ git clone https://github.com/alexforencich/cocotbext-axi
    $ pip install -e cocotbext-axi

## Documentation and usage examples

See the `tests` directory, [verilog-axi](https://github.com/alexforencich/verilog-axi), and [verilog-axis](https://github.com/alexforencich/verilog-axis) for complete testbenches using these modules.

### AXI and AXI lite master

The `AxiMaster` and `AxiLiteMaster` classes implement AXI masters and are capable of generating read and write operations against AXI slaves.  Requested operations will be split and aligned according to the AXI specification.  The `AxiMaster` module is capable of generating narrow bursts, handling multiple in-flight operations, and handling reordering and interleaving in responses across different transaction IDs.  `AxiMaster` and `AxiLiteMaster` and related objects all extend `Region`, so they can be attached to `AddressSpace` objects to handle memory operations in the specified region.

The `AxiMaster` is a wrapper around `AxiMasterWrite` and `AxiMasterRead`.  Similarly, `AxiLiteMaster` is a wrapper around `AxiLiteMasterWrite` and `AxiLiteMasterRead`.  If a read-only or write-only interface is required instead of a full interface, use the corresponding read-only or write-only variant, the usage and API are exactly the same.

To use these modules, import the one you need and connect it to the DUT:

    from cocotbext.axi import AxiBus, AxiMaster

    axi_master = AxiMaster(AxiBus.from_prefix(dut, "s_axi"), dut.clk, dut.rst)

The first argument to the constructor accepts an `AxiBus` or `AxiLiteBus` object, as appropriate.  These objects are containers for the interface signals and include class methods to automate connections.

Once the module is instantiated, read and write operations can be initiated in a couple of different ways.

First, operations can be carried out with async blocking `read()`, `write()`, and their associated word-access wrappers.  Multiple concurrent operations started from different coroutines are handled correctly, with results returned in the order that the operations complete.  For example:

    await axi_master.write(0x0000, b'test')
    data = await axi_master.read(0x0000, 4)

Additional parameters can be specified to control sideband signals and burst settings.  The transfer will be split into one or more bursts according to the AXI specification.  All bursts generated from the same call to `read()` or `write()` will use the same ID, which will be automatically generated if not specified.  `read()` and `write()` return `namedtuple` objects containing _address_, _data_ or _length_, and _resp_.  This is the preferred style, and this is the only style supported by the word-access wrappers.

Alternatively, operations can be initiated with non-blocking `init_read()` and `init_write()`.  These functions return `Event` objects which are triggered when the operation completes, and the result can be retrieved from `Event.data`.  For example:

    write_op = axi_master.init_write(0x0000, b'test')
    await write_op.wait()
    resp = write_op.data
    read_op = axi_master.init_read(0x0000, 4)
    await read_op.wait()
    resp = read_op.data

With this method, it is possible to start multiple concurrent operations from the same coroutine.  It is also possible to use the events with `Combine`, `First`, and `with_timeout`.

#### `AxiMaster` and `AxiLiteMaster` constructor parameters

* _bus_: `AxiBus` or `AxiLiteBus` object containing AXI interface signals
* _clock_: clock signal
* _reset_: reset signal (optional)
* _reset_active_level_: reset active level (optional, default `True`)

#### Additional parameters for `AxiMaster`

* _max_burst_len_: maximum burst length in cycles, range 1-256, default 256.

#### Methods

* `init_read(address, length, ...)`: initiate reading _length_ bytes, starting at _address_.  Returns an `Event` object.
* `init_write(address, data, ...)`: initiate writing _data_ (bytes), starting from _address_.  Returns an `Event` object.
* `idle()`: returns _True_ when there are no outstanding operations in progress
* `wait()`: blocking wait until all outstanding operations complete
* `wait_read()`: wait until all outstanding read operations complete
* `wait_write()`: wait until all outstanding write operations complete
* `read(address, length, ...)`: read _length_ bytes, starting at _address_
* `read_words(address, count, byteorder='little', ws=2, ...)`: read _count_ _ws_-byte words, starting at _address_
* `read_dwords(address, count, byteorder='little', ...)`: read _count_ 4-byte dwords, starting at _address_
* `read_qwords(address, count, byteorder='little', ...)`: read _count_ 8-byte qwords, starting at _address_
* `read_byte(address, ...)`: read single byte at _address_
* `read_word(address, byteorder='little', ws=2, ...)`: read single _ws_-byte word at _address_
* `read_dword(address, byteorder='little', ...)`: read single 4-byte dword at _address_
* `read_qword(address, byteorder='little', ...)`: read single 8-byte qword at _address_
* `write(address, data, ...)`: write _data_ (bytes), starting at _address_
* `write_words(address, data, byteorder='little', ws=2, ...)`: write _data_ (_ws_-byte words), starting at _address_
* `write_dwords(address, data, byteorder='little', ...)`: write _data_ (4-byte dwords), starting at _address_
* `write_qwords(address, data, byteorder='little', ...)`: write _data_ (8-byte qwords), starting at _address_
* `write_byte(address, data, ...)`: write single byte at _address_
* `write_word(address, data, byteorder='little', ws=2, ...)`: write single _ws_-byte word at _address_
* `write_dword(address, data, byteorder='little', ...)`: write single 4-byte dword at _address_
* `write_qword(address, data, byteorder='little', ...)`: write single 8-byte qword at _address_

#### Additional optional arguments for `AxiMaster`

* _arid_,_awid_: AXI ID for bursts, default automatically assigned
* _burst_: AXI burst type, default `AxiBurstType.INCR`
* _size_: AXI burst size, default maximum supported by interface
* _lock_: AXI lock type, default `AxiLockType.NORMAL`
* _cache_: AXI cache field, default `0b0011`
* _prot_: AXI protection flags, default `AxiProt.NONSECURE`
* _qos_: AXI QOS field, default `0`
* _region_: AXI region field, default `0`
* _user_: AXI user signal (awuser/aruser), default `0`
* _wuser_: AXI wuser signal, default `0` (write-related methods only)
* _event_: `Event` object used to wait on and retrieve result for specific operation, default `None`.  The event will be triggered when the operation completes and the result returned via `Event.data`.  (`init_read()` and `init_write()` only)

#### Additional optional arguments for `AxiLiteMaster`

* _prot_: AXI protection flags, default `AxiProt.NONSECURE`
* _event_: `Event` object used to wait on and retrieve result for specific operation, default `None`.  The event will be triggered when the operation completes and the result returned via `Event.data`.  (`init_read()` and `init_write()` only)

#### `AxiBus` and `AxiLiteBus` objects

The `AxiBus`, `AxiLiteBus`, and related objects are containers for the interface signals.  These hold instances of bus objects for the individual channels, which are currently extensions of `cocotb_bus.bus.Bus`.  Class methods `from_entity` and `from_prefix` are provided to facilitate signal name matching.  For AXI interfaces use `AxiBus`, `AxiReadBus`, or `AxiWriteBus`, as appropriate.  For AXI lite interfaces, use `AxiLiteBus`, `AxiLiteReadBus`, or `AxiLiteWriteBus`, as appropriate.

### AXI and AXI lite slave

The `AxiSlave` and `AxiLiteSlave` classes implement AXI slaves and are capable of completing read and write operations from upstream AXI masters.  The `AxiSlave` module is capable of handling narrow bursts.  These modules can either be used to perform memory reads and writes on a `MemoryInterface` on behalf of the DUT, or they can be extended to implement customized functionality.

The `AxiSlave` is a wrapper around `AxiSlaveWrite` and `AxiSlaveRead`.  Similarly, `AxiLiteSlave` is a wrapper around `AxiLiteSlaveWrite` and `AxiLiteSlaveRead`.  If a read-only or write-only interface is required instead of a full interface, use the corresponding read-only or write-only variant, the usage and API are exactly the same.

To use these modules, import the one you need and connect it to the DUT:

    from cocotbext.axi import AxiBus, AxiSlave, MemoryRegion

    axi_slave = AxiSlave(AxiBus.from_prefix(dut, "m_axi"), dut.clk, dut.rst)
    region = MemoryRegion(2**axi_slave.read_if.address_width)
    axi_slave.target = region

The first argument to the constructor accepts an `AxiBus` or `AxiLiteBus` object.  These objects are containers for the interface signals and include class methods to automate connections.

It is also possible to extend these modules; operation can be customized by overriding the internal `_read()` and `_write()` methods.  See `AxiRam` and `AxiLiteRam` for an example.

#### `AxiSlave` and `AxiLiteSlave` constructor parameters

* _bus_: `AxiBus` or `AxiLiteBus` object containing AXI interface signals
* _clock_: clock signal
* _reset_: reset signal (optional)
* _reset_active_level_: reset active level (optional, default `True`)
* _target_: target region (optional, default `None`)

#### Attributes:

* _target_: target region

### AXI and AXI lite RAM

The `AxiRam` and `AxiLiteRam` classes implement AXI RAMs and are capable of completing read and write operations from upstream AXI masters.  The `AxiRam` module is capable of handling narrow bursts.  These modules are extensions of the corresponding `AxiSlave` and `AxiLiteSlave` modules.  Internally, `SparseMemory` is used to support emulating very large memories.

The `AxiRam` is a wrapper around `AxiRamWrite` and `AxiRamRead`.  Similarly, `AxiLiteRam` is a wrapper around `AxiLiteRamWrite` and `AxiLiteRamRead`.  If a read-only or write-only interface is required instead of a full interface, use the corresponding read-only or write-only variant, the usage and API are exactly the same.

To use these modules, import the one you need and connect it to the DUT:

    from cocotbext.axi import AxiBus, AxiRam

    axi_ram = AxiRam(AxiBus.from_prefix(dut, "m_axi"), dut.clk, dut.rst, size=2**32)

The first argument to the constructor accepts an `AxiBus` or `AxiLiteBus` object.  These objects are containers for the interface signals and include class methods to automate connections.

Once the module is instantiated, the memory contents can be accessed in a couple of different ways.  First, the `mmap` object can be accessed directly via the `mem` attribute.  Second, `read()`, `write()`, and various word-access wrappers are available.  Hex dump helper methods are also provided for debugging.  For example:

    axi_ram.write(0x0000, b'test')
    data = axi_ram.read(0x0000, 4)
    axi_ram.hexdump(0x0000, 4, prefix="RAM")

Multi-port memories can be constructed by passing the `mem` object of the first instance to the other instances.  For example, here is how to create a four-port RAM:

    axi_ram_p1 = AxiRam(AxiBus.from_prefix(dut, "m00_axi"), dut.clk, dut.rst, size=2**32)
    axi_ram_p2 = AxiRam(AxiBus.from_prefix(dut, "m01_axi"), dut.clk, dut.rst, mem=axi_ram_p1.mem)
    axi_ram_p3 = AxiRam(AxiBus.from_prefix(dut, "m02_axi"), dut.clk, dut.rst, mem=axi_ram_p1.mem)
    axi_ram_p4 = AxiRam(AxiBus.from_prefix(dut, "m03_axi"), dut.clk, dut.rst, mem=axi_ram_p1.mem)

#### `AxiRam` and `AxiLiteRam` constructor parameters

* _bus_: `AxiBus` or `AxiLiteBus` object containing AXI interface signals
* _clock_: clock signal
* _reset_: reset signal (optional)
* _reset_active_level_: reset active level (optional, default `True`)
* _size_: memory size in bytes (optional, default `2**64`)
* _mem_: `mmap` or `SparseMemory` backing object to use (optional, overrides _size_)

#### Attributes:

* _mem_: directly access shared `mmap` or `SparseMemory` backing object

#### Methods

* `read(address, length)`: read _length_ bytes, starting at _address_
* `read_words(address, count, byteorder='little', ws=2)`: read _count_ _ws_-byte words, starting at _address_
* `read_dwords(address, count, byteorder='little')`: read _count_ 4-byte dwords, starting at _address_
* `read_qwords(address, count, byteorder='little')`: read _count_ 8-byte qwords, starting at _address_
* `read_byte(address)`: read single byte at _address_
* `read_word(address, byteorder='little', ws=2)`: read single _ws_-byte word at _address_
* `read_dword(address, byteorder='little')`: read single 4-byte dword at _address_
* `read_qword(address, byteorder='little')`: read single 8-byte qword at _address_
* `write(address, data)`: write _data_ (bytes), starting at _address_
* `write_words(address, data, byteorder='little', ws=2)`: write _data_ (_ws_-byte words), starting at _address_
* `write_dwords(address, data, byteorder='little')`: write _data_ (4-byte dwords), starting at _address_
* `write_qwords(address, data, byteorder='little')`: write _data_ (8-byte qwords), starting at _address_
* `write_byte(address, data)`: write single byte at _address_
* `write_word(address, data, byteorder='little', ws=2)`: write single _ws_-byte word at _address_
* `write_dword(address, data, byteorder='little')`: write single 4-byte dword at _address_
* `write_qword(address, data, byteorder='little')`: write single 8-byte qword at _address_
* `hexdump(address, length, prefix='')`: print hex dump of _length_ bytes starting from _address_, prefix lines with optional _prefix_
* `hexdump_line(address, length, prefix='')`: return hex dump (list of str) of _length_ bytes starting from _address_, prefix lines with optional _prefix_
* `hexdump_str(address, length, prefix='')`: return hex dump (str) of _length_ bytes starting from _address_, prefix lines with optional _prefix_

### AXI stream

The `AxiStreamSource`, `AxiStreamSink`, and `AxiStreamMonitor` classes can be used to drive, receive, and monitor traffic on AXI stream interfaces.  The `AxiStreamSource` drives all signals except for `tready` and can be used to drive AXI stream traffic into a design.  The `AxiStreamSink` drives the `tready` line only and as such can receive AXI stream traffic and exert backpressure.  The `AxiStreamMonitor` drives no signals and as such can be connected to AXI stream interfaces anywhere within a design to passively monitor traffic.

To use these modules, import the one you need and connect it to the DUT:

    from cocotbext.axi import (AxiStreamBus, AxiStreamSource, AxiStreamSink, AxiStreamMonitor)

    axis_source = AxiStreamSource(AxiStreamBus.from_prefix(dut, "s_axis"), dut.clk, dut.rst)
    axis_sink = AxiStreamSink(AxiStreamBus.from_prefix(dut, "m_axis"), dut.clk, dut.rst)
    axis_mon= AxiStreamMonitor(AxiStreamBus.from_prefix(dut.inst, "int_axis"), dut.clk, dut.rst)

The first argument to the constructor accepts an `AxiStreamBus` object.  This object is a container for the interface signals and includes class methods to automate connections.

To send data into a design with an `AxiStreamSource`, call `send()`/`send_nowait()` or `write()`/`write_nowait()`.  Accepted data types are iterables or `AxiStreamFrame` objects.  Optionally, call `wait()` to wait for the transmit operation to complete.  Example:

    await axis_source.send(b'test data')
    # wait for operation to complete (optional)
    await axis_source.wait()

It is also possible to wait for the transmission of a specific frame to complete by passing an event in the tx_complete field of the `AxiStreamFrame` object, and then awaiting the event.  The frame, with simulation time fields set, will be returned in the event data.  Example:

    frame = AxiStreamFrame(b'test data', tx_complete=Event())
    await axis_source.send(frame)
    await frame.tx_complete.wait()
    print(frame.tx_complete.data.sim_time_start)

To receive data with an `AxiStreamSink` or `AxiStreamMonitor`, call `recv()`/`recv_nowait()` or `read()`/`read_nowait()`.  Optionally call `wait()` to wait for new receive data.  `recv()` is intended for use with a frame-oriented interface, and by default compacts `AxiStreamFrame`s before returning them.  `read()` is intended for non-frame-oriented streams.  Calling `read()` internally calls `recv()` for all frames currently in the queue, then compacts and coalesces `tdata` from all frames into a separate read queue, from which read data is returned.  All sideband data is discarded.

    data = await axis_sink.recv()

#### Signals

* `tdata`: data, required
* `tvalid`: qualifies all other signals; optional, assumed `1` when absent
* `tready`: indicates sink is ready for data; optional, assumed `1` when absent
* `tlast`: marks the last cycle of a frame; optional, assumed `1` when absent
* `tkeep`: qualifies data byte, data bus width must be evenly divisible by `tkeep` signal width; optional, assumed `1` when absent
* `tid`: ID signal, can be used for routing; optional, assumed `0` when absent
* `tdest`: destination signal, can be used for routing; optional, assumed `0` when absent
* `tuser`: additional user data; optional, assumed `0` when absent

#### Constructor parameters:

* _bus_: `AxiStreamBus` object containing AXI stream interface signals
* _clock_: clock signal
* _reset_: reset signal (optional)
* _reset_active_level_: reset active level (optional, default `True`)
* _byte_size_: byte size (optional)
* _byte_lanes_: byte lane count (optional)

Note: _byte_size_, _byte_lanes_, `len(tdata)`, and `len(tkeep)` are all related, in that _byte_lanes_ is set from `tkeep` if it is connected, and `byte_size*byte_lanes == len(tdata)`.  So, if `tkeep` is connected, both _byte_size_ and _byte_lanes_ will be computed internally and cannot be overridden.  If `tkeep` is not connected, then either _byte_size_ or _byte_lanes_ can be specified, and the other will be computed such that `byte_size*byte_lanes == len(tdata)`.

#### Attributes:

* _pause_: stall the interface (deassert `tready` or `tvalid`) (source/sink only)
* _queue_occupancy_bytes_: number of bytes in queue (all)
* _queue_occupancy_frames_: number of frames in queue (all)
* _queue_occupancy_limit_bytes_: max number of bytes in queue allowed before backpressure is applied (source/sink only)
* _queue_occupancy_limit_frames_: max number of frames in queue allowed before backpressure is applied (source/sink only)

#### Methods

* `send(frame)`: send _frame_ (blocking) (source)
* `send_nowait(frame)`: send _frame_ (non-blocking) (source)
* `write(data)`: send _data_ (alias of send) (blocking) (source)
* `write_nowait(data)`: send _data_ (alias of send_nowait) (non-blocking) (source)
* `recv(compact=True)`: receive a frame as a `GmiiFrame` (blocking) (sink)
* `recv_nowait(compact=True)`: receive a frame as a `GmiiFrame` (non-blocking) (sink)
* `read(count)`: read _count_ bytes from buffer (blocking) (sink/monitor)
* `read_nowait(count)`: read _count_ bytes from buffer (non-blocking) (sink/monitor)
* `count()`: returns the number of items in the queue (all)
* `empty()`: returns _True_ if the queue is empty (all)
* `full()`: returns _True_ if the queue occupancy limits are met (source/sink)
* `idle()`: returns _True_ if no transfer is in progress (all) or if the queue is not empty (source)
* `clear()`: drop all data in queue (all)
* `wait()`: wait for idle (source)
* `wait(timeout=0, timeout_unit='ns')`: wait for frame received (sink)
* `set_pause_generator(generator)`: set generator for pause signal, generator will be advanced on every clock cycle (source/sink)
* `clear_pause_generator()`: remove generator for pause signal (source/sink)

#### `AxiStreamBus` object

The `AxiStreamBus` object is a container for the interface signals.  Currently, it is an extension of `cocotb.bus.Bus`.  Class methods `from_entity` and `from_prefix` are provided to facilitate signal name matching.

#### `AxiStreamFrame` object

The `AxiStreamFrame` object is a container for a frame to be transferred via AXI stream.  The `tdata` field contains the packet data in the form of a list of bytes, which is either a `bytearray` if the byte size is 8 bits or a `list` of `int`s otherwise.  `tkeep`, `tid`, `tdest`, and `tuser` can either be `None`, an `int`, or a `list` of `int`s.

Attributes:

* `tdata`: bytes, bytearray, or list
* `tkeep`: tkeep field, optional; list, each entry qualifies the corresponding entry in `tdata`.  Can be used to insert gaps on the source side.
* `tid`: tid field, optional; int or list with one entry per `tdata`, last value used per cycle when sending.
* `tdest`: tdest field, optional; int or list with one entry per `tdata`, last value used per cycle when sending.
* `tuser`: tuser field, optional; int or list with one entry per `tdata`, last value used per cycle when sending.
* `sim_time_start`: simulation time of first transfer cycle of frame.
* `sim_time_end`: simulation time of last transfer cycle of frame.
* `tx_complete`: event or callable triggered when frame is transmitted.

Methods:

* `normalize()`: pack `tkeep`, `tid`, `tdest`, and `tuser` to the same length as `tdata`, replicating last element if necessary, initialize `tkeep` to list of `1` and `tid`, `tdest`, and `tuser` to list of `0` if not specified.
* `compact()`: remove `tdata`, `tid`, `tdest`, and `tuser` values based on `tkeep`, remove `tkeep`, compact `tid`, `tdest`, and `tuser` to an int if all values are identical.

### Address space abstraction

The address space abstraction provides a framework for cross-connecting multiple memory-mapped interfaces for testing components that interface with complex systems, including components with DMA engines.

`MemoryInterface` is the base class for all components in the address space abstraction.  `MemoryInterface` provides the core `read()` and `write()` methods, which implement bounds checking, as well as word-access wrappers.  Methods for creating `Window` and `WindowPool` objects are also provided.  The function `get_absolute_address()` translates addresses to the system address space.  `MemoryInterface` can be extended to implement custom functionality by overriding `_read()` and `_write()`.

`Window` objects represent views onto a parent address space with some length and offset.  `read()` and `write()` operations on a `Window` are translated to the equivalent operations on the parent address space.  Multiple `Window` instances can overlap and access the same portion of address space.

`WindowPool` provides a method for dynamically allocating windows from a section of address space.  It uses a standard memory management algorithm to provide naturally-aligned `Window` objects of the requested size.

`Region` is the base class for all components which implement a portion of address space.  `Region` objects can be registered with `AddressSpace` objects to handle `read()` and `write()` operations in a specified region.  `Region` can be extended by components that implement a portion of address space.

`MemoryRegion` is an extension of `Region` that uses an `mmap` instance to handle memory operations.  `MemoryRegion` also provides hex dump methods as well as indexing and slicing.

`SparseMemoryRegion` is similar to `MemoryRegion` but is backed by `SparseMemory` instead of `mmap` and as such can emulate extremely large regions of address space.

`PeripheralRegion` is an extension of `Region` that can wrap another object that implements `read()` and `write()`, as an alternative to extending `Region`.

`AddressSpace` is the core object for handling address spaces.  `Region` objects can be registered with `AddressSpace` with specified base address, size, and offset.  The `AddressSpace` object will then direct `read()` and `write()` operations to the appropriate `Region`s, splitting requests appropriately when necessary and translating addresses.  Regions registered with `offset` other than `None` are translated such that accesses to base address + N map to N + offset.  Regions registered with an `offset` of `None` are not translated.  `Region` objects registered with the same `AddressSpace` cannot overlap, however the same `Region` can be registered multiple times.  `AddressSpace` also provides a method for creating `Pool` objects.

`Pool` is an extension of `AddressSpace` that supports dynamic allocation of `MemoryRegion`s.  It uses a standard memory management algorithm to provide naturally-aligned `MemoryRegion` objects of the requested size.

#### Example

This is a simple example that shows how the address space abstraction components can be used to connect a DUT to a simulated host system, including simulated RAM, an AXI interface from the DUT for DMA, and an AXI lite interface to the DUT for control.

    from cocotbext.axi import AddressSpace, SparseMemoryRegion
    from cocotbext.axi import AxiBus, AxiLiteMaster, AxiSlave

    # system address space
    address_space = AddressSpace(2**32)

    # RAM
    ram = SparseMemoryRegion(2**24)
    address_space.register_region(ram, 0x0000_0000)
    ram_pool = address_space.create_window_pool(0x0000_0000, 2**20)

    # DUT control register interface
    axil_master = AxiLiteMaster(AxiLiteBus.from_prefix(dut, "s_axil_ctrl"), dut.clk, dut.rst)
    address_space.register_region(axil_master, 0x8000_0000)
    ctrl_regs = address_space.create_window(0x8000_0000, axil_master.size)

    # DMA from DUT
    axi_slave = AxiSlave(AxiBus.from_prefix(dut, "m_axi_dma"), dut.clk, dut.rst, target=address_space)

    # exercise DUT DMA functionality
    src_block = ram_pool.alloc_window(1024)
    dst_block = ram_pool.alloc_window(1024)

    test_data = b'test data'
    await src_block.write(0, test_data)

    await ctrl_regs.write_dword(DMA_SRC_ADDR, src_block.get_absolute_address(0))
    await ctrl_regs.write_dword(DMA_DST_ADDR, dst_block.get_absolute_address(0))
    await ctrl_regs.write_dword(DMA_LEN, len(test_data))
    await ctrl_regs.write_dword(DMA_CONTROL, 1)

    while await ctrl_regs.read_dword(DMA_STATUS) == 0:
        pass

    assert await dst_block.read(0, len(test_data)) == test_data

### AXI signals

* Write address channel
    * `awid`: transaction ID
    * `awaddr`: address
    * `awlen`: burst length (cycles)
    * `awsize`: burst size (bytes/cycle)
    * `awburst`: burst type
    * `awlock`: lock type
    * `awcache`: cache control
    * `awprot`: protection bits
    * `awqos`: QoS field
    * `awregion`: region field
    * `awuser`: additional user sideband data
    * `awvalid`: valid signal, qualifies all channel fields
    * `awready`: ready signal, back-pressure from sink
* Write data channel
    * `wdata`: write data
    * `wstrb`: write strobe
    * `wlast`: end of burst flag
    * `wuser`: additional user sideband data
    * `wvalid`: valid signal, qualifies all channel fields
    * `wready`: ready signal, back-pressure from sink
* Write response channel
    * `bid`: transaction ID
    * `bresp`: write response
    * `buser`: additional user sideband data
    * `bvalid`: valid signal, qualifies all channel fields
    * `bready`: ready signal, back-pressure from sink
* Read address channel
    * `arid`: transaction ID
    * `araddr`: address
    * `arlen`: burst length (cycles)
    * `arsize`: burst size (bytes/cycle)
    * `arburst`: burst type
    * `arlock`: lock type
    * `arcache`: cache control
    * `arprot`: protection bits
    * `arqos`: QoS field
    * `arregion`: region field
    * `aruser`: additional user sideband data
    * `arvalid`: valid signal, qualifies all channel fields
    * `arready`: ready signal, back-pressure from sink
* Read data channel
    * `rid`: transaction ID
    * `rdata`: read data
    * `rresp`: read response
    * `rlast`: end of burst flag
    * `ruser`: additional user sideband data
    * `rvalid`: valid signal, qualifies all channel fields
    * `rready`: ready signal, back-pressure from sink

### AXI lite signals

* Write address channel
    * `awaddr`: address
    * `awprot`: protection bits
    * `awvalid`: valid signal, qualifies all channel fields
    * `awready`: ready signal, back-pressure from sink
* Write data channel
    * `wdata`: write data
    * `wstrb`: write strobe
    * `wvalid`: valid signal, qualifies all channel fields
    * `wready`: ready signal, back-pressure from sink
* Write response channel
    * `bresp`: write response
    * `bvalid`: valid signal, qualifies all channel fields
    * `bready`: ready signal, back-pressure from sink
* Read address channel
    * `araddr`: address
    * `arprot`: protection bits
    * `arvalid`: valid signal, qualifies all channel fields
    * `arready`: ready signal, back-pressure from sink
* Read data channel
    * `rdata`: read data
    * `rresp`: read response
    * `rvalid`: valid signal, qualifies all channel fields
    * `rready`: ready signal, back-pressure from sink

### AXI stream signals

* `tdata`: data
* `tvalid`: qualifies all other signals
* `tready`: indicates sink is ready for data
* `tlast`: marks the last cycle of a frame
* `tkeep`: qualifies data bytes in `tdata`
* `tid`: ID signal, can be used for routing
* `tdest`: destination signal, can be used for routing
* `tuser`: additional sideband data


%package help
Summary:	Development documents and examples for cocotbext-axi
Provides:	python3-cocotbext-axi-doc
%description help
# AXI interface modules for Cocotb

[![Build Status](https://github.com/alexforencich/cocotbext-axi/workflows/Regression%20Tests/badge.svg?branch=master)](https://github.com/alexforencich/cocotbext-axi/actions/)
[![codecov](https://codecov.io/gh/alexforencich/cocotbext-axi/branch/master/graph/badge.svg)](https://codecov.io/gh/alexforencich/cocotbext-axi)
[![PyPI version](https://badge.fury.io/py/cocotbext-axi.svg)](https://pypi.org/project/cocotbext-axi)
[![Downloads](https://pepy.tech/badge/cocotbext-axi)](https://pepy.tech/project/cocotbext-axi)

GitHub repository: https://github.com/alexforencich/cocotbext-axi

## Introduction

AXI, AXI lite, and AXI stream simulation models for [cocotb](https://github.com/cocotb/cocotb).

## Installation

Installation from pip (release version, stable):

    $ pip install cocotbext-axi

Installation from git (latest development version, potentially unstable):

    $ pip install https://github.com/alexforencich/cocotbext-axi/archive/master.zip

Installation for active development:

    $ git clone https://github.com/alexforencich/cocotbext-axi
    $ pip install -e cocotbext-axi

## Documentation and usage examples

See the `tests` directory, [verilog-axi](https://github.com/alexforencich/verilog-axi), and [verilog-axis](https://github.com/alexforencich/verilog-axis) for complete testbenches using these modules.

### AXI and AXI lite master

The `AxiMaster` and `AxiLiteMaster` classes implement AXI masters and are capable of generating read and write operations against AXI slaves.  Requested operations will be split and aligned according to the AXI specification.  The `AxiMaster` module is capable of generating narrow bursts, handling multiple in-flight operations, and handling reordering and interleaving in responses across different transaction IDs.  `AxiMaster` and `AxiLiteMaster` and related objects all extend `Region`, so they can be attached to `AddressSpace` objects to handle memory operations in the specified region.

The `AxiMaster` is a wrapper around `AxiMasterWrite` and `AxiMasterRead`.  Similarly, `AxiLiteMaster` is a wrapper around `AxiLiteMasterWrite` and `AxiLiteMasterRead`.  If a read-only or write-only interface is required instead of a full interface, use the corresponding read-only or write-only variant, the usage and API are exactly the same.

To use these modules, import the one you need and connect it to the DUT:

    from cocotbext.axi import AxiBus, AxiMaster

    axi_master = AxiMaster(AxiBus.from_prefix(dut, "s_axi"), dut.clk, dut.rst)

The first argument to the constructor accepts an `AxiBus` or `AxiLiteBus` object, as appropriate.  These objects are containers for the interface signals and include class methods to automate connections.

Once the module is instantiated, read and write operations can be initiated in a couple of different ways.

First, operations can be carried out with async blocking `read()`, `write()`, and their associated word-access wrappers.  Multiple concurrent operations started from different coroutines are handled correctly, with results returned in the order that the operations complete.  For example:

    await axi_master.write(0x0000, b'test')
    data = await axi_master.read(0x0000, 4)

Additional parameters can be specified to control sideband signals and burst settings.  The transfer will be split into one or more bursts according to the AXI specification.  All bursts generated from the same call to `read()` or `write()` will use the same ID, which will be automatically generated if not specified.  `read()` and `write()` return `namedtuple` objects containing _address_, _data_ or _length_, and _resp_.  This is the preferred style, and this is the only style supported by the word-access wrappers.

Alternatively, operations can be initiated with non-blocking `init_read()` and `init_write()`.  These functions return `Event` objects which are triggered when the operation completes, and the result can be retrieved from `Event.data`.  For example:

    write_op = axi_master.init_write(0x0000, b'test')
    await write_op.wait()
    resp = write_op.data
    read_op = axi_master.init_read(0x0000, 4)
    await read_op.wait()
    resp = read_op.data

With this method, it is possible to start multiple concurrent operations from the same coroutine.  It is also possible to use the events with `Combine`, `First`, and `with_timeout`.

#### `AxiMaster` and `AxiLiteMaster` constructor parameters

* _bus_: `AxiBus` or `AxiLiteBus` object containing AXI interface signals
* _clock_: clock signal
* _reset_: reset signal (optional)
* _reset_active_level_: reset active level (optional, default `True`)

#### Additional parameters for `AxiMaster`

* _max_burst_len_: maximum burst length in cycles, range 1-256, default 256.

#### Methods

* `init_read(address, length, ...)`: initiate reading _length_ bytes, starting at _address_.  Returns an `Event` object.
* `init_write(address, data, ...)`: initiate writing _data_ (bytes), starting from _address_.  Returns an `Event` object.
* `idle()`: returns _True_ when there are no outstanding operations in progress
* `wait()`: blocking wait until all outstanding operations complete
* `wait_read()`: wait until all outstanding read operations complete
* `wait_write()`: wait until all outstanding write operations complete
* `read(address, length, ...)`: read _length_ bytes, starting at _address_
* `read_words(address, count, byteorder='little', ws=2, ...)`: read _count_ _ws_-byte words, starting at _address_
* `read_dwords(address, count, byteorder='little', ...)`: read _count_ 4-byte dwords, starting at _address_
* `read_qwords(address, count, byteorder='little', ...)`: read _count_ 8-byte qwords, starting at _address_
* `read_byte(address, ...)`: read single byte at _address_
* `read_word(address, byteorder='little', ws=2, ...)`: read single _ws_-byte word at _address_
* `read_dword(address, byteorder='little', ...)`: read single 4-byte dword at _address_
* `read_qword(address, byteorder='little', ...)`: read single 8-byte qword at _address_
* `write(address, data, ...)`: write _data_ (bytes), starting at _address_
* `write_words(address, data, byteorder='little', ws=2, ...)`: write _data_ (_ws_-byte words), starting at _address_
* `write_dwords(address, data, byteorder='little', ...)`: write _data_ (4-byte dwords), starting at _address_
* `write_qwords(address, data, byteorder='little', ...)`: write _data_ (8-byte qwords), starting at _address_
* `write_byte(address, data, ...)`: write single byte at _address_
* `write_word(address, data, byteorder='little', ws=2, ...)`: write single _ws_-byte word at _address_
* `write_dword(address, data, byteorder='little', ...)`: write single 4-byte dword at _address_
* `write_qword(address, data, byteorder='little', ...)`: write single 8-byte qword at _address_

#### Additional optional arguments for `AxiMaster`

* _arid_,_awid_: AXI ID for bursts, default automatically assigned
* _burst_: AXI burst type, default `AxiBurstType.INCR`
* _size_: AXI burst size, default maximum supported by interface
* _lock_: AXI lock type, default `AxiLockType.NORMAL`
* _cache_: AXI cache field, default `0b0011`
* _prot_: AXI protection flags, default `AxiProt.NONSECURE`
* _qos_: AXI QOS field, default `0`
* _region_: AXI region field, default `0`
* _user_: AXI user signal (awuser/aruser), default `0`
* _wuser_: AXI wuser signal, default `0` (write-related methods only)
* _event_: `Event` object used to wait on and retrieve result for specific operation, default `None`.  The event will be triggered when the operation completes and the result returned via `Event.data`.  (`init_read()` and `init_write()` only)

#### Additional optional arguments for `AxiLiteMaster`

* _prot_: AXI protection flags, default `AxiProt.NONSECURE`
* _event_: `Event` object used to wait on and retrieve result for specific operation, default `None`.  The event will be triggered when the operation completes and the result returned via `Event.data`.  (`init_read()` and `init_write()` only)

#### `AxiBus` and `AxiLiteBus` objects

The `AxiBus`, `AxiLiteBus`, and related objects are containers for the interface signals.  These hold instances of bus objects for the individual channels, which are currently extensions of `cocotb_bus.bus.Bus`.  Class methods `from_entity` and `from_prefix` are provided to facilitate signal name matching.  For AXI interfaces use `AxiBus`, `AxiReadBus`, or `AxiWriteBus`, as appropriate.  For AXI lite interfaces, use `AxiLiteBus`, `AxiLiteReadBus`, or `AxiLiteWriteBus`, as appropriate.

### AXI and AXI lite slave

The `AxiSlave` and `AxiLiteSlave` classes implement AXI slaves and are capable of completing read and write operations from upstream AXI masters.  The `AxiSlave` module is capable of handling narrow bursts.  These modules can either be used to perform memory reads and writes on a `MemoryInterface` on behalf of the DUT, or they can be extended to implement customized functionality.

The `AxiSlave` is a wrapper around `AxiSlaveWrite` and `AxiSlaveRead`.  Similarly, `AxiLiteSlave` is a wrapper around `AxiLiteSlaveWrite` and `AxiLiteSlaveRead`.  If a read-only or write-only interface is required instead of a full interface, use the corresponding read-only or write-only variant, the usage and API are exactly the same.

To use these modules, import the one you need and connect it to the DUT:

    from cocotbext.axi import AxiBus, AxiSlave, MemoryRegion

    axi_slave = AxiSlave(AxiBus.from_prefix(dut, "m_axi"), dut.clk, dut.rst)
    region = MemoryRegion(2**axi_slave.read_if.address_width)
    axi_slave.target = region

The first argument to the constructor accepts an `AxiBus` or `AxiLiteBus` object.  These objects are containers for the interface signals and include class methods to automate connections.

It is also possible to extend these modules; operation can be customized by overriding the internal `_read()` and `_write()` methods.  See `AxiRam` and `AxiLiteRam` for an example.

#### `AxiSlave` and `AxiLiteSlave` constructor parameters

* _bus_: `AxiBus` or `AxiLiteBus` object containing AXI interface signals
* _clock_: clock signal
* _reset_: reset signal (optional)
* _reset_active_level_: reset active level (optional, default `True`)
* _target_: target region (optional, default `None`)

#### Attributes:

* _target_: target region

### AXI and AXI lite RAM

The `AxiRam` and `AxiLiteRam` classes implement AXI RAMs and are capable of completing read and write operations from upstream AXI masters.  The `AxiRam` module is capable of handling narrow bursts.  These modules are extensions of the corresponding `AxiSlave` and `AxiLiteSlave` modules.  Internally, `SparseMemory` is used to support emulating very large memories.

The `AxiRam` is a wrapper around `AxiRamWrite` and `AxiRamRead`.  Similarly, `AxiLiteRam` is a wrapper around `AxiLiteRamWrite` and `AxiLiteRamRead`.  If a read-only or write-only interface is required instead of a full interface, use the corresponding read-only or write-only variant, the usage and API are exactly the same.

To use these modules, import the one you need and connect it to the DUT:

    from cocotbext.axi import AxiBus, AxiRam

    axi_ram = AxiRam(AxiBus.from_prefix(dut, "m_axi"), dut.clk, dut.rst, size=2**32)

The first argument to the constructor accepts an `AxiBus` or `AxiLiteBus` object.  These objects are containers for the interface signals and include class methods to automate connections.

Once the module is instantiated, the memory contents can be accessed in a couple of different ways.  First, the `mmap` object can be accessed directly via the `mem` attribute.  Second, `read()`, `write()`, and various word-access wrappers are available.  Hex dump helper methods are also provided for debugging.  For example:

    axi_ram.write(0x0000, b'test')
    data = axi_ram.read(0x0000, 4)
    axi_ram.hexdump(0x0000, 4, prefix="RAM")

Multi-port memories can be constructed by passing the `mem` object of the first instance to the other instances.  For example, here is how to create a four-port RAM:

    axi_ram_p1 = AxiRam(AxiBus.from_prefix(dut, "m00_axi"), dut.clk, dut.rst, size=2**32)
    axi_ram_p2 = AxiRam(AxiBus.from_prefix(dut, "m01_axi"), dut.clk, dut.rst, mem=axi_ram_p1.mem)
    axi_ram_p3 = AxiRam(AxiBus.from_prefix(dut, "m02_axi"), dut.clk, dut.rst, mem=axi_ram_p1.mem)
    axi_ram_p4 = AxiRam(AxiBus.from_prefix(dut, "m03_axi"), dut.clk, dut.rst, mem=axi_ram_p1.mem)

#### `AxiRam` and `AxiLiteRam` constructor parameters

* _bus_: `AxiBus` or `AxiLiteBus` object containing AXI interface signals
* _clock_: clock signal
* _reset_: reset signal (optional)
* _reset_active_level_: reset active level (optional, default `True`)
* _size_: memory size in bytes (optional, default `2**64`)
* _mem_: `mmap` or `SparseMemory` backing object to use (optional, overrides _size_)

#### Attributes:

* _mem_: directly access shared `mmap` or `SparseMemory` backing object

#### Methods

* `read(address, length)`: read _length_ bytes, starting at _address_
* `read_words(address, count, byteorder='little', ws=2)`: read _count_ _ws_-byte words, starting at _address_
* `read_dwords(address, count, byteorder='little')`: read _count_ 4-byte dwords, starting at _address_
* `read_qwords(address, count, byteorder='little')`: read _count_ 8-byte qwords, starting at _address_
* `read_byte(address)`: read single byte at _address_
* `read_word(address, byteorder='little', ws=2)`: read single _ws_-byte word at _address_
* `read_dword(address, byteorder='little')`: read single 4-byte dword at _address_
* `read_qword(address, byteorder='little')`: read single 8-byte qword at _address_
* `write(address, data)`: write _data_ (bytes), starting at _address_
* `write_words(address, data, byteorder='little', ws=2)`: write _data_ (_ws_-byte words), starting at _address_
* `write_dwords(address, data, byteorder='little')`: write _data_ (4-byte dwords), starting at _address_
* `write_qwords(address, data, byteorder='little')`: write _data_ (8-byte qwords), starting at _address_
* `write_byte(address, data)`: write single byte at _address_
* `write_word(address, data, byteorder='little', ws=2)`: write single _ws_-byte word at _address_
* `write_dword(address, data, byteorder='little')`: write single 4-byte dword at _address_
* `write_qword(address, data, byteorder='little')`: write single 8-byte qword at _address_
* `hexdump(address, length, prefix='')`: print hex dump of _length_ bytes starting from _address_, prefix lines with optional _prefix_
* `hexdump_line(address, length, prefix='')`: return hex dump (list of str) of _length_ bytes starting from _address_, prefix lines with optional _prefix_
* `hexdump_str(address, length, prefix='')`: return hex dump (str) of _length_ bytes starting from _address_, prefix lines with optional _prefix_

### AXI stream

The `AxiStreamSource`, `AxiStreamSink`, and `AxiStreamMonitor` classes can be used to drive, receive, and monitor traffic on AXI stream interfaces.  The `AxiStreamSource` drives all signals except for `tready` and can be used to drive AXI stream traffic into a design.  The `AxiStreamSink` drives the `tready` line only and as such can receive AXI stream traffic and exert backpressure.  The `AxiStreamMonitor` drives no signals and as such can be connected to AXI stream interfaces anywhere within a design to passively monitor traffic.

To use these modules, import the one you need and connect it to the DUT:

    from cocotbext.axi import (AxiStreamBus, AxiStreamSource, AxiStreamSink, AxiStreamMonitor)

    axis_source = AxiStreamSource(AxiStreamBus.from_prefix(dut, "s_axis"), dut.clk, dut.rst)
    axis_sink = AxiStreamSink(AxiStreamBus.from_prefix(dut, "m_axis"), dut.clk, dut.rst)
    axis_mon= AxiStreamMonitor(AxiStreamBus.from_prefix(dut.inst, "int_axis"), dut.clk, dut.rst)

The first argument to the constructor accepts an `AxiStreamBus` object.  This object is a container for the interface signals and includes class methods to automate connections.

To send data into a design with an `AxiStreamSource`, call `send()`/`send_nowait()` or `write()`/`write_nowait()`.  Accepted data types are iterables or `AxiStreamFrame` objects.  Optionally, call `wait()` to wait for the transmit operation to complete.  Example:

    await axis_source.send(b'test data')
    # wait for operation to complete (optional)
    await axis_source.wait()

It is also possible to wait for the transmission of a specific frame to complete by passing an event in the tx_complete field of the `AxiStreamFrame` object, and then awaiting the event.  The frame, with simulation time fields set, will be returned in the event data.  Example:

    frame = AxiStreamFrame(b'test data', tx_complete=Event())
    await axis_source.send(frame)
    await frame.tx_complete.wait()
    print(frame.tx_complete.data.sim_time_start)

To receive data with an `AxiStreamSink` or `AxiStreamMonitor`, call `recv()`/`recv_nowait()` or `read()`/`read_nowait()`.  Optionally call `wait()` to wait for new receive data.  `recv()` is intended for use with a frame-oriented interface, and by default compacts `AxiStreamFrame`s before returning them.  `read()` is intended for non-frame-oriented streams.  Calling `read()` internally calls `recv()` for all frames currently in the queue, then compacts and coalesces `tdata` from all frames into a separate read queue, from which read data is returned.  All sideband data is discarded.

    data = await axis_sink.recv()

#### Signals

* `tdata`: data, required
* `tvalid`: qualifies all other signals; optional, assumed `1` when absent
* `tready`: indicates sink is ready for data; optional, assumed `1` when absent
* `tlast`: marks the last cycle of a frame; optional, assumed `1` when absent
* `tkeep`: qualifies data byte, data bus width must be evenly divisible by `tkeep` signal width; optional, assumed `1` when absent
* `tid`: ID signal, can be used for routing; optional, assumed `0` when absent
* `tdest`: destination signal, can be used for routing; optional, assumed `0` when absent
* `tuser`: additional user data; optional, assumed `0` when absent

#### Constructor parameters:

* _bus_: `AxiStreamBus` object containing AXI stream interface signals
* _clock_: clock signal
* _reset_: reset signal (optional)
* _reset_active_level_: reset active level (optional, default `True`)
* _byte_size_: byte size (optional)
* _byte_lanes_: byte lane count (optional)

Note: _byte_size_, _byte_lanes_, `len(tdata)`, and `len(tkeep)` are all related, in that _byte_lanes_ is set from `tkeep` if it is connected, and `byte_size*byte_lanes == len(tdata)`.  So, if `tkeep` is connected, both _byte_size_ and _byte_lanes_ will be computed internally and cannot be overridden.  If `tkeep` is not connected, then either _byte_size_ or _byte_lanes_ can be specified, and the other will be computed such that `byte_size*byte_lanes == len(tdata)`.

#### Attributes:

* _pause_: stall the interface (deassert `tready` or `tvalid`) (source/sink only)
* _queue_occupancy_bytes_: number of bytes in queue (all)
* _queue_occupancy_frames_: number of frames in queue (all)
* _queue_occupancy_limit_bytes_: max number of bytes in queue allowed before backpressure is applied (source/sink only)
* _queue_occupancy_limit_frames_: max number of frames in queue allowed before backpressure is applied (source/sink only)

#### Methods

* `send(frame)`: send _frame_ (blocking) (source)
* `send_nowait(frame)`: send _frame_ (non-blocking) (source)
* `write(data)`: send _data_ (alias of send) (blocking) (source)
* `write_nowait(data)`: send _data_ (alias of send_nowait) (non-blocking) (source)
* `recv(compact=True)`: receive a frame as a `GmiiFrame` (blocking) (sink)
* `recv_nowait(compact=True)`: receive a frame as a `GmiiFrame` (non-blocking) (sink)
* `read(count)`: read _count_ bytes from buffer (blocking) (sink/monitor)
* `read_nowait(count)`: read _count_ bytes from buffer (non-blocking) (sink/monitor)
* `count()`: returns the number of items in the queue (all)
* `empty()`: returns _True_ if the queue is empty (all)
* `full()`: returns _True_ if the queue occupancy limits are met (source/sink)
* `idle()`: returns _True_ if no transfer is in progress (all) or if the queue is not empty (source)
* `clear()`: drop all data in queue (all)
* `wait()`: wait for idle (source)
* `wait(timeout=0, timeout_unit='ns')`: wait for frame received (sink)
* `set_pause_generator(generator)`: set generator for pause signal, generator will be advanced on every clock cycle (source/sink)
* `clear_pause_generator()`: remove generator for pause signal (source/sink)

#### `AxiStreamBus` object

The `AxiStreamBus` object is a container for the interface signals.  Currently, it is an extension of `cocotb.bus.Bus`.  Class methods `from_entity` and `from_prefix` are provided to facilitate signal name matching.

#### `AxiStreamFrame` object

The `AxiStreamFrame` object is a container for a frame to be transferred via AXI stream.  The `tdata` field contains the packet data in the form of a list of bytes, which is either a `bytearray` if the byte size is 8 bits or a `list` of `int`s otherwise.  `tkeep`, `tid`, `tdest`, and `tuser` can either be `None`, an `int`, or a `list` of `int`s.

Attributes:

* `tdata`: bytes, bytearray, or list
* `tkeep`: tkeep field, optional; list, each entry qualifies the corresponding entry in `tdata`.  Can be used to insert gaps on the source side.
* `tid`: tid field, optional; int or list with one entry per `tdata`, last value used per cycle when sending.
* `tdest`: tdest field, optional; int or list with one entry per `tdata`, last value used per cycle when sending.
* `tuser`: tuser field, optional; int or list with one entry per `tdata`, last value used per cycle when sending.
* `sim_time_start`: simulation time of first transfer cycle of frame.
* `sim_time_end`: simulation time of last transfer cycle of frame.
* `tx_complete`: event or callable triggered when frame is transmitted.

Methods:

* `normalize()`: pack `tkeep`, `tid`, `tdest`, and `tuser` to the same length as `tdata`, replicating last element if necessary, initialize `tkeep` to list of `1` and `tid`, `tdest`, and `tuser` to list of `0` if not specified.
* `compact()`: remove `tdata`, `tid`, `tdest`, and `tuser` values based on `tkeep`, remove `tkeep`, compact `tid`, `tdest`, and `tuser` to an int if all values are identical.

### Address space abstraction

The address space abstraction provides a framework for cross-connecting multiple memory-mapped interfaces for testing components that interface with complex systems, including components with DMA engines.

`MemoryInterface` is the base class for all components in the address space abstraction.  `MemoryInterface` provides the core `read()` and `write()` methods, which implement bounds checking, as well as word-access wrappers.  Methods for creating `Window` and `WindowPool` objects are also provided.  The function `get_absolute_address()` translates addresses to the system address space.  `MemoryInterface` can be extended to implement custom functionality by overriding `_read()` and `_write()`.

`Window` objects represent views onto a parent address space with some length and offset.  `read()` and `write()` operations on a `Window` are translated to the equivalent operations on the parent address space.  Multiple `Window` instances can overlap and access the same portion of address space.

`WindowPool` provides a method for dynamically allocating windows from a section of address space.  It uses a standard memory management algorithm to provide naturally-aligned `Window` objects of the requested size.

`Region` is the base class for all components which implement a portion of address space.  `Region` objects can be registered with `AddressSpace` objects to handle `read()` and `write()` operations in a specified region.  `Region` can be extended by components that implement a portion of address space.

`MemoryRegion` is an extension of `Region` that uses an `mmap` instance to handle memory operations.  `MemoryRegion` also provides hex dump methods as well as indexing and slicing.

`SparseMemoryRegion` is similar to `MemoryRegion` but is backed by `SparseMemory` instead of `mmap` and as such can emulate extremely large regions of address space.

`PeripheralRegion` is an extension of `Region` that can wrap another object that implements `read()` and `write()`, as an alternative to extending `Region`.

`AddressSpace` is the core object for handling address spaces.  `Region` objects can be registered with `AddressSpace` with specified base address, size, and offset.  The `AddressSpace` object will then direct `read()` and `write()` operations to the appropriate `Region`s, splitting requests appropriately when necessary and translating addresses.  Regions registered with `offset` other than `None` are translated such that accesses to base address + N map to N + offset.  Regions registered with an `offset` of `None` are not translated.  `Region` objects registered with the same `AddressSpace` cannot overlap, however the same `Region` can be registered multiple times.  `AddressSpace` also provides a method for creating `Pool` objects.

`Pool` is an extension of `AddressSpace` that supports dynamic allocation of `MemoryRegion`s.  It uses a standard memory management algorithm to provide naturally-aligned `MemoryRegion` objects of the requested size.

#### Example

This is a simple example that shows how the address space abstraction components can be used to connect a DUT to a simulated host system, including simulated RAM, an AXI interface from the DUT for DMA, and an AXI lite interface to the DUT for control.

    from cocotbext.axi import AddressSpace, SparseMemoryRegion
    from cocotbext.axi import AxiBus, AxiLiteMaster, AxiSlave

    # system address space
    address_space = AddressSpace(2**32)

    # RAM
    ram = SparseMemoryRegion(2**24)
    address_space.register_region(ram, 0x0000_0000)
    ram_pool = address_space.create_window_pool(0x0000_0000, 2**20)

    # DUT control register interface
    axil_master = AxiLiteMaster(AxiLiteBus.from_prefix(dut, "s_axil_ctrl"), dut.clk, dut.rst)
    address_space.register_region(axil_master, 0x8000_0000)
    ctrl_regs = address_space.create_window(0x8000_0000, axil_master.size)

    # DMA from DUT
    axi_slave = AxiSlave(AxiBus.from_prefix(dut, "m_axi_dma"), dut.clk, dut.rst, target=address_space)

    # exercise DUT DMA functionality
    src_block = ram_pool.alloc_window(1024)
    dst_block = ram_pool.alloc_window(1024)

    test_data = b'test data'
    await src_block.write(0, test_data)

    await ctrl_regs.write_dword(DMA_SRC_ADDR, src_block.get_absolute_address(0))
    await ctrl_regs.write_dword(DMA_DST_ADDR, dst_block.get_absolute_address(0))
    await ctrl_regs.write_dword(DMA_LEN, len(test_data))
    await ctrl_regs.write_dword(DMA_CONTROL, 1)

    while await ctrl_regs.read_dword(DMA_STATUS) == 0:
        pass

    assert await dst_block.read(0, len(test_data)) == test_data

### AXI signals

* Write address channel
    * `awid`: transaction ID
    * `awaddr`: address
    * `awlen`: burst length (cycles)
    * `awsize`: burst size (bytes/cycle)
    * `awburst`: burst type
    * `awlock`: lock type
    * `awcache`: cache control
    * `awprot`: protection bits
    * `awqos`: QoS field
    * `awregion`: region field
    * `awuser`: additional user sideband data
    * `awvalid`: valid signal, qualifies all channel fields
    * `awready`: ready signal, back-pressure from sink
* Write data channel
    * `wdata`: write data
    * `wstrb`: write strobe
    * `wlast`: end of burst flag
    * `wuser`: additional user sideband data
    * `wvalid`: valid signal, qualifies all channel fields
    * `wready`: ready signal, back-pressure from sink
* Write response channel
    * `bid`: transaction ID
    * `bresp`: write response
    * `buser`: additional user sideband data
    * `bvalid`: valid signal, qualifies all channel fields
    * `bready`: ready signal, back-pressure from sink
* Read address channel
    * `arid`: transaction ID
    * `araddr`: address
    * `arlen`: burst length (cycles)
    * `arsize`: burst size (bytes/cycle)
    * `arburst`: burst type
    * `arlock`: lock type
    * `arcache`: cache control
    * `arprot`: protection bits
    * `arqos`: QoS field
    * `arregion`: region field
    * `aruser`: additional user sideband data
    * `arvalid`: valid signal, qualifies all channel fields
    * `arready`: ready signal, back-pressure from sink
* Read data channel
    * `rid`: transaction ID
    * `rdata`: read data
    * `rresp`: read response
    * `rlast`: end of burst flag
    * `ruser`: additional user sideband data
    * `rvalid`: valid signal, qualifies all channel fields
    * `rready`: ready signal, back-pressure from sink

### AXI lite signals

* Write address channel
    * `awaddr`: address
    * `awprot`: protection bits
    * `awvalid`: valid signal, qualifies all channel fields
    * `awready`: ready signal, back-pressure from sink
* Write data channel
    * `wdata`: write data
    * `wstrb`: write strobe
    * `wvalid`: valid signal, qualifies all channel fields
    * `wready`: ready signal, back-pressure from sink
* Write response channel
    * `bresp`: write response
    * `bvalid`: valid signal, qualifies all channel fields
    * `bready`: ready signal, back-pressure from sink
* Read address channel
    * `araddr`: address
    * `arprot`: protection bits
    * `arvalid`: valid signal, qualifies all channel fields
    * `arready`: ready signal, back-pressure from sink
* Read data channel
    * `rdata`: read data
    * `rresp`: read response
    * `rvalid`: valid signal, qualifies all channel fields
    * `rready`: ready signal, back-pressure from sink

### AXI stream signals

* `tdata`: data
* `tvalid`: qualifies all other signals
* `tready`: indicates sink is ready for data
* `tlast`: marks the last cycle of a frame
* `tkeep`: qualifies data bytes in `tdata`
* `tid`: ID signal, can be used for routing
* `tdest`: destination signal, can be used for routing
* `tuser`: additional sideband data


%prep
%autosetup -n cocotbext-axi-0.1.24

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-cocotbext-axi -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.24-1
- Package Spec generated