1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
|
%global _empty_manifest_terminate_build 0
Name: python-codecarbon
Version: 2.2.3
Release: 1
Summary: please add a summary manually as the author left a blank one
License: MIT License
URL: https://pypi.org/project/codecarbon/
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/c5/2d/f83998583c02ae4c653801642f49bd90f29ece54ced4cfec6d576a937983/codecarbon-2.2.3.tar.gz
BuildArch: noarch
Requires: python3-arrow
Requires: python3-pandas
Requires: python3-pynvml
Requires: python3-requests
Requires: python3-psutil
Requires: python3-py-cpuinfo
Requires: python3-fuzzywuzzy
Requires: python3-click
Requires: python3-dash
Requires: python3-plotly
Requires: python3-dash-bootstrap-components
Requires: python3-dash
Requires: python3-dash-bootstrap-components
Requires: python3-fire
%description

Estimate and track carbon emissions from your computer, quantify and analyze their impact.
[**Documentation**](https://mlco2.github.io/codecarbon)
<br/>
[](https://anaconda.org/conda-forge/codecarbon)
[](https://pypi.org/project/codecarbon/)
[](https://zenodo.org/badge/latestdoi/263364731)
- [About CodeCarbon π‘](#about-codecarbon-)
- [Quickstart π](#quickstart-)
- [Installation π§](#installation-)
- [Start to estimate your impact π](#start-to-estimate-your-impact-)
- [Monitoring your whole machine](#monitoring-your-machine-)
- [In your python code](#in-your-python-code-)
- [Visualize](#visualize-)
- [Contributing π€](#contributing-)
- [Contact π](#contact-)
# About CodeCarbon π‘
**CodeCarbon** started with a quite simple question:
**What is the carbon emission impact of my computer program? :shrug:**
We found some global data like "computing currently represents roughly 0.5% of the worldβs energy consumption" but nothing on our individual/organisation level impact.
At **CodeCarbon**, we believe, along with Niels Bohr, that "Nothing exists until it is measured". So we found a way to estimate how much CO<sub>2</sub> we produce while running our code.
*How?*
We created a Python package that estimates your hardware electricity power consumption (GPU + CPU + RAM) and we apply to it the carbon intensity of the region where the computing is done.

We explain more about this calculation in the [**Methodology**](https://mlco2.github.io/codecarbon/methodology.html#) section of the documentation.
Our hope is that this package will be used widely for estimating the carbon footprint of computing, and for establishing best practices with regards to the disclosure and reduction of this footprint.
**So ready to "change the world one run at a time"? Let's start with a very quick set up.**
# Quickstart π
## Installation π§
**From PyPI repository**
```python
pip install codecarbon
```
**From Conda repository**
```python
conda install -c conda-forge codecarbon
```
To see more installation options please refer to the documentation : [**Installation**](https://mlco2.github.io/codecarbon/installation.html#)
## Start to estimate your impact π
To get an experiment_id enter:
```python
! codecarbon init
```
You can now store it in a **.codecarbon.config** at the root of your project
```python
[codecarbon]
log_level = DEBUG
save_to_api = True
experiment_id = 2bcbcbb8-850d-4692-af0d-76f6f36d79b2 #the experiment_id you get with init
```
Now you have 2 main options:
### Monitoring your machine π»
In your command prompt use:
```codecarbon monitor```
The package will track your emissions independently from your code.
### In your Python code π
```python
from codecarbon import track_emissions
@track_emissions()
def your_function_to_track():
# your code
```
The package will track the emissions generated by the execution of your function.
There is other ways to use **codecarbon** package, please refer to the documentation to learn more about it: [**Usage**](https://mlco2.github.io/codecarbon/usage.html#)
## Visualize π
You can now visualize your experiment emissions on the [dashboard](https://dashboard.codecarbon.io/).

*Note that for now, all emissions data send to codecarbon API are public.*
> Hope you enjoy your first steps monitoring your carbon computing impact!
> Thanks to the incredible codecarbon community πͺπΌ a lot more options are available using *codecarbon* including:
> - offline mode
> - cloud mode
> - comet integration...
>
> Please explore the [**Documentation**](https://mlco2.github.io/codecarbon) to learn about it
> If ever what your are looking for is not yet implemented, let us know through the *issues* and even better become one of our π¦ΈπΌββοΈπ¦ΈπΌββοΈ contributors! more info ππΌ
# Contributing π€
We are hoping that the open-source community will help us edit the code and make it better!
You are welcome to open issues, even suggest solutions and better still contribute the fix/improvement! We can guide you if you're not sure where to start but want to help us out π₯
In order to contribute a change to our code base, please submit a pull request (PR) via GitHub and someone from our team will go over it and accept it.
Check out our [contribution guidelines :arrow_upper_right:](https://github.com/mlco2/codecarbon/blob/master/CONTRIBUTING.md)
Contact [@vict0rsch](https://github.com/vict0rsch) to be added to our slack workspace if you want to contribute regularly!
# Contact π
Maintainers are [@vict0rsch](https://github.com/vict0rsch) [@benoit-cty](https://github.com/benoit-cty) and [@SaboniAmine](https://github.com/saboniamine). Codecarbon is developed by volunteers from [**Mila**](http://mila.quebec) and the [**DataForGoodFR**](https://twitter.com/dataforgood_fr) community alongside donated professional time of engineers at [**Comet.ml**](https://comet.ml) and [**BCG GAMMA**](https://www.bcg.com/en-nl/beyond-consulting/bcg-gamma/default).
%package -n python3-codecarbon
Summary: please add a summary manually as the author left a blank one
Provides: python-codecarbon
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-codecarbon

Estimate and track carbon emissions from your computer, quantify and analyze their impact.
[**Documentation**](https://mlco2.github.io/codecarbon)
<br/>
[](https://anaconda.org/conda-forge/codecarbon)
[](https://pypi.org/project/codecarbon/)
[](https://zenodo.org/badge/latestdoi/263364731)
- [About CodeCarbon π‘](#about-codecarbon-)
- [Quickstart π](#quickstart-)
- [Installation π§](#installation-)
- [Start to estimate your impact π](#start-to-estimate-your-impact-)
- [Monitoring your whole machine](#monitoring-your-machine-)
- [In your python code](#in-your-python-code-)
- [Visualize](#visualize-)
- [Contributing π€](#contributing-)
- [Contact π](#contact-)
# About CodeCarbon π‘
**CodeCarbon** started with a quite simple question:
**What is the carbon emission impact of my computer program? :shrug:**
We found some global data like "computing currently represents roughly 0.5% of the worldβs energy consumption" but nothing on our individual/organisation level impact.
At **CodeCarbon**, we believe, along with Niels Bohr, that "Nothing exists until it is measured". So we found a way to estimate how much CO<sub>2</sub> we produce while running our code.
*How?*
We created a Python package that estimates your hardware electricity power consumption (GPU + CPU + RAM) and we apply to it the carbon intensity of the region where the computing is done.

We explain more about this calculation in the [**Methodology**](https://mlco2.github.io/codecarbon/methodology.html#) section of the documentation.
Our hope is that this package will be used widely for estimating the carbon footprint of computing, and for establishing best practices with regards to the disclosure and reduction of this footprint.
**So ready to "change the world one run at a time"? Let's start with a very quick set up.**
# Quickstart π
## Installation π§
**From PyPI repository**
```python
pip install codecarbon
```
**From Conda repository**
```python
conda install -c conda-forge codecarbon
```
To see more installation options please refer to the documentation : [**Installation**](https://mlco2.github.io/codecarbon/installation.html#)
## Start to estimate your impact π
To get an experiment_id enter:
```python
! codecarbon init
```
You can now store it in a **.codecarbon.config** at the root of your project
```python
[codecarbon]
log_level = DEBUG
save_to_api = True
experiment_id = 2bcbcbb8-850d-4692-af0d-76f6f36d79b2 #the experiment_id you get with init
```
Now you have 2 main options:
### Monitoring your machine π»
In your command prompt use:
```codecarbon monitor```
The package will track your emissions independently from your code.
### In your Python code π
```python
from codecarbon import track_emissions
@track_emissions()
def your_function_to_track():
# your code
```
The package will track the emissions generated by the execution of your function.
There is other ways to use **codecarbon** package, please refer to the documentation to learn more about it: [**Usage**](https://mlco2.github.io/codecarbon/usage.html#)
## Visualize π
You can now visualize your experiment emissions on the [dashboard](https://dashboard.codecarbon.io/).

*Note that for now, all emissions data send to codecarbon API are public.*
> Hope you enjoy your first steps monitoring your carbon computing impact!
> Thanks to the incredible codecarbon community πͺπΌ a lot more options are available using *codecarbon* including:
> - offline mode
> - cloud mode
> - comet integration...
>
> Please explore the [**Documentation**](https://mlco2.github.io/codecarbon) to learn about it
> If ever what your are looking for is not yet implemented, let us know through the *issues* and even better become one of our π¦ΈπΌββοΈπ¦ΈπΌββοΈ contributors! more info ππΌ
# Contributing π€
We are hoping that the open-source community will help us edit the code and make it better!
You are welcome to open issues, even suggest solutions and better still contribute the fix/improvement! We can guide you if you're not sure where to start but want to help us out π₯
In order to contribute a change to our code base, please submit a pull request (PR) via GitHub and someone from our team will go over it and accept it.
Check out our [contribution guidelines :arrow_upper_right:](https://github.com/mlco2/codecarbon/blob/master/CONTRIBUTING.md)
Contact [@vict0rsch](https://github.com/vict0rsch) to be added to our slack workspace if you want to contribute regularly!
# Contact π
Maintainers are [@vict0rsch](https://github.com/vict0rsch) [@benoit-cty](https://github.com/benoit-cty) and [@SaboniAmine](https://github.com/saboniamine). Codecarbon is developed by volunteers from [**Mila**](http://mila.quebec) and the [**DataForGoodFR**](https://twitter.com/dataforgood_fr) community alongside donated professional time of engineers at [**Comet.ml**](https://comet.ml) and [**BCG GAMMA**](https://www.bcg.com/en-nl/beyond-consulting/bcg-gamma/default).
%package help
Summary: Development documents and examples for codecarbon
Provides: python3-codecarbon-doc
%description help

Estimate and track carbon emissions from your computer, quantify and analyze their impact.
[**Documentation**](https://mlco2.github.io/codecarbon)
<br/>
[](https://anaconda.org/conda-forge/codecarbon)
[](https://pypi.org/project/codecarbon/)
[](https://zenodo.org/badge/latestdoi/263364731)
- [About CodeCarbon π‘](#about-codecarbon-)
- [Quickstart π](#quickstart-)
- [Installation π§](#installation-)
- [Start to estimate your impact π](#start-to-estimate-your-impact-)
- [Monitoring your whole machine](#monitoring-your-machine-)
- [In your python code](#in-your-python-code-)
- [Visualize](#visualize-)
- [Contributing π€](#contributing-)
- [Contact π](#contact-)
# About CodeCarbon π‘
**CodeCarbon** started with a quite simple question:
**What is the carbon emission impact of my computer program? :shrug:**
We found some global data like "computing currently represents roughly 0.5% of the worldβs energy consumption" but nothing on our individual/organisation level impact.
At **CodeCarbon**, we believe, along with Niels Bohr, that "Nothing exists until it is measured". So we found a way to estimate how much CO<sub>2</sub> we produce while running our code.
*How?*
We created a Python package that estimates your hardware electricity power consumption (GPU + CPU + RAM) and we apply to it the carbon intensity of the region where the computing is done.

We explain more about this calculation in the [**Methodology**](https://mlco2.github.io/codecarbon/methodology.html#) section of the documentation.
Our hope is that this package will be used widely for estimating the carbon footprint of computing, and for establishing best practices with regards to the disclosure and reduction of this footprint.
**So ready to "change the world one run at a time"? Let's start with a very quick set up.**
# Quickstart π
## Installation π§
**From PyPI repository**
```python
pip install codecarbon
```
**From Conda repository**
```python
conda install -c conda-forge codecarbon
```
To see more installation options please refer to the documentation : [**Installation**](https://mlco2.github.io/codecarbon/installation.html#)
## Start to estimate your impact π
To get an experiment_id enter:
```python
! codecarbon init
```
You can now store it in a **.codecarbon.config** at the root of your project
```python
[codecarbon]
log_level = DEBUG
save_to_api = True
experiment_id = 2bcbcbb8-850d-4692-af0d-76f6f36d79b2 #the experiment_id you get with init
```
Now you have 2 main options:
### Monitoring your machine π»
In your command prompt use:
```codecarbon monitor```
The package will track your emissions independently from your code.
### In your Python code π
```python
from codecarbon import track_emissions
@track_emissions()
def your_function_to_track():
# your code
```
The package will track the emissions generated by the execution of your function.
There is other ways to use **codecarbon** package, please refer to the documentation to learn more about it: [**Usage**](https://mlco2.github.io/codecarbon/usage.html#)
## Visualize π
You can now visualize your experiment emissions on the [dashboard](https://dashboard.codecarbon.io/).

*Note that for now, all emissions data send to codecarbon API are public.*
> Hope you enjoy your first steps monitoring your carbon computing impact!
> Thanks to the incredible codecarbon community πͺπΌ a lot more options are available using *codecarbon* including:
> - offline mode
> - cloud mode
> - comet integration...
>
> Please explore the [**Documentation**](https://mlco2.github.io/codecarbon) to learn about it
> If ever what your are looking for is not yet implemented, let us know through the *issues* and even better become one of our π¦ΈπΌββοΈπ¦ΈπΌββοΈ contributors! more info ππΌ
# Contributing π€
We are hoping that the open-source community will help us edit the code and make it better!
You are welcome to open issues, even suggest solutions and better still contribute the fix/improvement! We can guide you if you're not sure where to start but want to help us out π₯
In order to contribute a change to our code base, please submit a pull request (PR) via GitHub and someone from our team will go over it and accept it.
Check out our [contribution guidelines :arrow_upper_right:](https://github.com/mlco2/codecarbon/blob/master/CONTRIBUTING.md)
Contact [@vict0rsch](https://github.com/vict0rsch) to be added to our slack workspace if you want to contribute regularly!
# Contact π
Maintainers are [@vict0rsch](https://github.com/vict0rsch) [@benoit-cty](https://github.com/benoit-cty) and [@SaboniAmine](https://github.com/saboniamine). Codecarbon is developed by volunteers from [**Mila**](http://mila.quebec) and the [**DataForGoodFR**](https://twitter.com/dataforgood_fr) community alongside donated professional time of engineers at [**Comet.ml**](https://comet.ml) and [**BCG GAMMA**](https://www.bcg.com/en-nl/beyond-consulting/bcg-gamma/default).
%prep
%autosetup -n codecarbon-2.2.3
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-codecarbon -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 2.2.3-1
- Package Spec generated
|