1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
|
%global _empty_manifest_terminate_build 0
Name: python-congas
Version: 0.0.75
Release: 1
Summary: Copy Number genotyping from single cell RNA sequencing
License: GPL-3.0
URL: https://github.com/Militeee/congas
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/0b/81/40cafaca7406d60c112f93d1ea0bc0208cfa06667f5b1ef0510bd26eb7fc/congas-0.0.75.tar.gz
BuildArch: noarch
Requires: python3-matplotlib
Requires: python3-pandas
Requires: python3-pyro-ppl
Requires: python3-numpy
Requires: python3-scikit-learn
%description
# Copy number genotyping from scRNA sequencing
[](https://travis-ci.org/Militeee/congas)
[](https://codecov.io/gh/Militeee/congas)
A set of Pyro models and functions to infer CNA from scRNA-seq data.
It comes with a companion R package (hlink) that works as an interface and provides preprocessing, simulation and visualization routines.
Currently providing:
- A mixture model on segments where CNV are modelled as LogNormal random variable (MixtureGaussian)
- Same as above but the number of cluster is learned (MixtureGaussianDMP)
- A model where CNVs are modelled as outcome from Categorical distributions, clusters share the same parameters (MixtureDirichlet)
- A simple Hmm where CNVs are again categorical, but there is no clustering (SimpleHmm)
- The version of MixtureDirichlet but with temporal dependency (HmmMixtureRNA)
Coming soon:
- A linear model in the emission that can account for known covariates
- The equivalent of MixtureGaussian but with CNVs as Categorical random variable
- A model on genes (all the other models assume a division in segments)
To install:
`$ pip install congas`
To run a simple analysis on the example data
```python
import congas as cn
from congas.models import MixtureGaussian
data_dict = cn.simulation_data
params, loss = cn.run_analysis(data_dict,MixtureGaussian, steps=200, lr=0.05)
```
[Full Documentation](https://annealpyro.readthedocs.io/en/latest/)
%package -n python3-congas
Summary: Copy Number genotyping from single cell RNA sequencing
Provides: python-congas
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-congas
# Copy number genotyping from scRNA sequencing
[](https://travis-ci.org/Militeee/congas)
[](https://codecov.io/gh/Militeee/congas)
A set of Pyro models and functions to infer CNA from scRNA-seq data.
It comes with a companion R package (hlink) that works as an interface and provides preprocessing, simulation and visualization routines.
Currently providing:
- A mixture model on segments where CNV are modelled as LogNormal random variable (MixtureGaussian)
- Same as above but the number of cluster is learned (MixtureGaussianDMP)
- A model where CNVs are modelled as outcome from Categorical distributions, clusters share the same parameters (MixtureDirichlet)
- A simple Hmm where CNVs are again categorical, but there is no clustering (SimpleHmm)
- The version of MixtureDirichlet but with temporal dependency (HmmMixtureRNA)
Coming soon:
- A linear model in the emission that can account for known covariates
- The equivalent of MixtureGaussian but with CNVs as Categorical random variable
- A model on genes (all the other models assume a division in segments)
To install:
`$ pip install congas`
To run a simple analysis on the example data
```python
import congas as cn
from congas.models import MixtureGaussian
data_dict = cn.simulation_data
params, loss = cn.run_analysis(data_dict,MixtureGaussian, steps=200, lr=0.05)
```
[Full Documentation](https://annealpyro.readthedocs.io/en/latest/)
%package help
Summary: Development documents and examples for congas
Provides: python3-congas-doc
%description help
# Copy number genotyping from scRNA sequencing
[](https://travis-ci.org/Militeee/congas)
[](https://codecov.io/gh/Militeee/congas)
A set of Pyro models and functions to infer CNA from scRNA-seq data.
It comes with a companion R package (hlink) that works as an interface and provides preprocessing, simulation and visualization routines.
Currently providing:
- A mixture model on segments where CNV are modelled as LogNormal random variable (MixtureGaussian)
- Same as above but the number of cluster is learned (MixtureGaussianDMP)
- A model where CNVs are modelled as outcome from Categorical distributions, clusters share the same parameters (MixtureDirichlet)
- A simple Hmm where CNVs are again categorical, but there is no clustering (SimpleHmm)
- The version of MixtureDirichlet but with temporal dependency (HmmMixtureRNA)
Coming soon:
- A linear model in the emission that can account for known covariates
- The equivalent of MixtureGaussian but with CNVs as Categorical random variable
- A model on genes (all the other models assume a division in segments)
To install:
`$ pip install congas`
To run a simple analysis on the example data
```python
import congas as cn
from congas.models import MixtureGaussian
data_dict = cn.simulation_data
params, loss = cn.run_analysis(data_dict,MixtureGaussian, steps=200, lr=0.05)
```
[Full Documentation](https://annealpyro.readthedocs.io/en/latest/)
%prep
%autosetup -n congas-0.0.75
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-congas -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.75-1
- Package Spec generated
|