1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
|
%global _empty_manifest_terminate_build 0
Name: python-ConSReg
Version: 1.1.7
Release: 1
Summary: condition-specific regulation
License: MIT
URL: https://github.com/LiLabAtVT/ConSReg
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/ad/4e/47edea2d770fd9d0f99b0356cf215361302c7375764256740357e383987c/ConSReg-1.1.7.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-pandas
Requires: python3-joblib
Requires: python3-rpy2
Requires: python3-networkx
Requires: python3-scikit-learn
Requires: python3-intervaltree
%description
# ConSReg 1.1.4
[](https://opensource.org/licenses/MIT)
Condition-specific regulations
- [ConSReg 1.1.4](#consreg-114)
- [Getting Started](#getting-started)
* [1. Installation](#1-installation)
+ [1.1 Required packages](#11-required-packages)
- [1.1.1 Python](#111-python)
- [1.1.2 R](#112-r)
+ [1.2 Easy installation by Anaconda (recommended)](#12-easy-installation-by-anaconda--recommended-)
+ [1.3 Manual installation (Skip this section if 1.2 is successful)](#13-manual-installation--skip-this-section-if-12-is-successful-)
+ [1.3.1 R installation](#131-r-installation)
- [install R](#install-r)
- [install R packages](#install-r-packages)
+ [1.3.2 Python installation](#132-python-installation)
* [2. Sample datasets](#2-sample-datasets)
* [3. Analysis](#3-analysis)
* [4. Publication](#4-publication)
<small><i><a href='http://ecotrust-canada.github.io/markdown-toc/'>Table of contents generated with markdown-toc</a></i></small>
# Getting Started
## 1. Installation
### 1.1 Required packages
#### 1.1.1 Python
- python = 3.6
- numpy == 1.16.2
- scipy == 1.1.0
- pandas == 0.21.1
- joblib >= 0.11
- rpy2==2.8.6
- networkx >= 2
- sklearn >= 0.19.1
- intervaltree == 2.1.0
#### 1.1.2 R
- ChIPSeeker == 1.16.1
- CoReg == 1.0.1
- gglasso == 1.4
- RRF == 1.9
- R >= 3.5.1
### 1.2 Easy installation by Anaconda (recommended)
Since ConSReg is dependent on both Python and R packages, we recommend installing ConSReg by Anaconda to easily set up the running environment. You may retrive Anaconda from [here](https://www.anaconda.com/) and install the version corresponding to your OS.
Once Anaconda is installed in your OS, run the following commands to create an new environment and install ConSReg and all its dependencies into the new environment:
```bash
conda create -y -n consreg python=3.6 # The new environment name is 'consreg'. You may use other name instead.
conda activate consreg
conda install -y -c bioconda --no-channel-priority bioconductor-chipseeker
conda install -y --no-channel-priority r-base r-essentials
conda install -y --no-channel-priority -c conda-forge r-gglasso r-rrf r-devtools
pip install ConSReg
```
Then ConSReg environment can be activated by `conda activate consreg` and disabled by `conda deactivate`
### 1.3 Manual installation (Skip this section if 1.2 is successful)
### 1.3.1 R installation
#### install R
If R is not already installed, you may follow these steps to build R from source code. Otherwise, you may skip this section and start from 1.2.2
First, disable any conda environment, if there is an active one.
```shell
conda deactivate
```
Download R source code from CRAN (https://cran.r-project.org/). You may use any version you like. It is recommended to use R version > 3.0.0. This ensures that rpy2 works correctly with R.
```shell
# Download R 3.6.1
wget https://cran.r-project.org/src/base/R-3/R-3.6.1.tar.gz
```
Decompress the downloaded file
```shell
tar -zvxf R-3.6.1
```
In the decompressed folder, configure R by:
```shell
./configure prefix=path_to_install_R --enable-R-shlib
```
`--prefix=` specifies a writeable directory to install R into. `--enable-R-shlib` flag was added to build R shared libraries.
In the decompressed folder, compile R
```shell
make
```
Install R into the specified directory:
```shell
make install
```
Add a line to ~/.bashrc to tell the OS where to look for R
```shell
export PATH=path_to_R_bin_directory:$PATH
```
Add the following line to ~/.bashrc. This is for telling rpy2 where to look for dynamic libraries.
```shell
export LD_LIBRARY_PATH=/home/alexsong/R/3.6.1/lib64/R/lib:$LD_LIBRARY_PATH
```
Apply the changes to environment variables `PATH` and `LD_LIBRARY_PATH`:
```shell
source ~/.bashrc
```
#### install R packages
ConSReg requires several R packages: `ChIPseeker`, `CoReg`, `gglasso` and `RRF`.
It is recommended to deactivate any conda environment when installing R packages, as it may add the environment-specific path which may fail the installation. If any conda environment is active, you may deactivate it by:
```shell
conda deactivate
```
To install `ChIPSeeker` from bioconductor, type the following commands in R (for R 3.6 or higher version):
```R
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("ChIPseeker")
```
For older version of R, type the following commands in R:
```R
source("https://bioconductor.org/biocLite.R")
biocLite("ChIPseeker")
```
Please refer to the instructions described [here](https://www.bioconductor.org/packages/release/bioc/html/ChIPseeker.html) for more details.
To install `CoReg` pakcage from GitHub, type the following commands in R environment:
```R
install.packages("devtools")
library(devtools)
install_github("LiLabAtVT/CoReg")
```
Please refer to the GitHub page of `CoReg` project for more details:
[link](https://github.com/LiLabAtVT/CoReg)
To install `gglasso` package from CRAN, type the following commands in R environment:
```R
install.pacakges("gglasso")
```
Please refer to the link [here](https://cran.r-project.org/web/packages/gglasso/index.html) for more details.
To install `RRF` package from CRAN, type the following commands in R environment:
```R
install.pacakges("RRF")
```
Please refer to the link [here](https://cran.r-project.org/web/packages/RRF/index.html) for more details.
### 1.3.2 Python installation
ConSReg can be installed by pip:
```shell
pip install ConSReg
```
Sometime rpy2 may throw out error message when imported in Python. This problem may arise because rpy2 was built with the R version that is different from the one it is linked to when imported in Python. To fix this, you may remove rpy2 package then reinstall it with 'no-cache-dir' flag:
```shell
pip install ConSReg --no-cache-dir
```
Alternatively, you may want to install ConSReg in development mode to be able to edit the package by yourself. To do so, simply `git clone` this repository and then under the directory that contains `setup.py`, type in:
```shell
pip install -e .
```
## 2. Sample datasets
Sample datasets can be found in `data` folder.
## 3. Analysis
We provide code for analyzing the sample datasets in two jupyter notebooks located in the root folder of this project: **bulk_analysis.ipynb** (for bulk RNA-seq data) and **single_cell_analysis.ipynb** (for single cell RNA-seq data).
## 4. Publication
Please cite the followint paper if you use ConSReg in your research:
Qi Song, Jiyoung Lee, Shamima Akter, Ruth Grene, Song Li. "Prediction of condition-specific regulatory genes using machine learning." Nucleic acids research 48.11 (2020): e62-e62.
%package -n python3-ConSReg
Summary: condition-specific regulation
Provides: python-ConSReg
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-ConSReg
# ConSReg 1.1.4
[](https://opensource.org/licenses/MIT)
Condition-specific regulations
- [ConSReg 1.1.4](#consreg-114)
- [Getting Started](#getting-started)
* [1. Installation](#1-installation)
+ [1.1 Required packages](#11-required-packages)
- [1.1.1 Python](#111-python)
- [1.1.2 R](#112-r)
+ [1.2 Easy installation by Anaconda (recommended)](#12-easy-installation-by-anaconda--recommended-)
+ [1.3 Manual installation (Skip this section if 1.2 is successful)](#13-manual-installation--skip-this-section-if-12-is-successful-)
+ [1.3.1 R installation](#131-r-installation)
- [install R](#install-r)
- [install R packages](#install-r-packages)
+ [1.3.2 Python installation](#132-python-installation)
* [2. Sample datasets](#2-sample-datasets)
* [3. Analysis](#3-analysis)
* [4. Publication](#4-publication)
<small><i><a href='http://ecotrust-canada.github.io/markdown-toc/'>Table of contents generated with markdown-toc</a></i></small>
# Getting Started
## 1. Installation
### 1.1 Required packages
#### 1.1.1 Python
- python = 3.6
- numpy == 1.16.2
- scipy == 1.1.0
- pandas == 0.21.1
- joblib >= 0.11
- rpy2==2.8.6
- networkx >= 2
- sklearn >= 0.19.1
- intervaltree == 2.1.0
#### 1.1.2 R
- ChIPSeeker == 1.16.1
- CoReg == 1.0.1
- gglasso == 1.4
- RRF == 1.9
- R >= 3.5.1
### 1.2 Easy installation by Anaconda (recommended)
Since ConSReg is dependent on both Python and R packages, we recommend installing ConSReg by Anaconda to easily set up the running environment. You may retrive Anaconda from [here](https://www.anaconda.com/) and install the version corresponding to your OS.
Once Anaconda is installed in your OS, run the following commands to create an new environment and install ConSReg and all its dependencies into the new environment:
```bash
conda create -y -n consreg python=3.6 # The new environment name is 'consreg'. You may use other name instead.
conda activate consreg
conda install -y -c bioconda --no-channel-priority bioconductor-chipseeker
conda install -y --no-channel-priority r-base r-essentials
conda install -y --no-channel-priority -c conda-forge r-gglasso r-rrf r-devtools
pip install ConSReg
```
Then ConSReg environment can be activated by `conda activate consreg` and disabled by `conda deactivate`
### 1.3 Manual installation (Skip this section if 1.2 is successful)
### 1.3.1 R installation
#### install R
If R is not already installed, you may follow these steps to build R from source code. Otherwise, you may skip this section and start from 1.2.2
First, disable any conda environment, if there is an active one.
```shell
conda deactivate
```
Download R source code from CRAN (https://cran.r-project.org/). You may use any version you like. It is recommended to use R version > 3.0.0. This ensures that rpy2 works correctly with R.
```shell
# Download R 3.6.1
wget https://cran.r-project.org/src/base/R-3/R-3.6.1.tar.gz
```
Decompress the downloaded file
```shell
tar -zvxf R-3.6.1
```
In the decompressed folder, configure R by:
```shell
./configure prefix=path_to_install_R --enable-R-shlib
```
`--prefix=` specifies a writeable directory to install R into. `--enable-R-shlib` flag was added to build R shared libraries.
In the decompressed folder, compile R
```shell
make
```
Install R into the specified directory:
```shell
make install
```
Add a line to ~/.bashrc to tell the OS where to look for R
```shell
export PATH=path_to_R_bin_directory:$PATH
```
Add the following line to ~/.bashrc. This is for telling rpy2 where to look for dynamic libraries.
```shell
export LD_LIBRARY_PATH=/home/alexsong/R/3.6.1/lib64/R/lib:$LD_LIBRARY_PATH
```
Apply the changes to environment variables `PATH` and `LD_LIBRARY_PATH`:
```shell
source ~/.bashrc
```
#### install R packages
ConSReg requires several R packages: `ChIPseeker`, `CoReg`, `gglasso` and `RRF`.
It is recommended to deactivate any conda environment when installing R packages, as it may add the environment-specific path which may fail the installation. If any conda environment is active, you may deactivate it by:
```shell
conda deactivate
```
To install `ChIPSeeker` from bioconductor, type the following commands in R (for R 3.6 or higher version):
```R
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("ChIPseeker")
```
For older version of R, type the following commands in R:
```R
source("https://bioconductor.org/biocLite.R")
biocLite("ChIPseeker")
```
Please refer to the instructions described [here](https://www.bioconductor.org/packages/release/bioc/html/ChIPseeker.html) for more details.
To install `CoReg` pakcage from GitHub, type the following commands in R environment:
```R
install.packages("devtools")
library(devtools)
install_github("LiLabAtVT/CoReg")
```
Please refer to the GitHub page of `CoReg` project for more details:
[link](https://github.com/LiLabAtVT/CoReg)
To install `gglasso` package from CRAN, type the following commands in R environment:
```R
install.pacakges("gglasso")
```
Please refer to the link [here](https://cran.r-project.org/web/packages/gglasso/index.html) for more details.
To install `RRF` package from CRAN, type the following commands in R environment:
```R
install.pacakges("RRF")
```
Please refer to the link [here](https://cran.r-project.org/web/packages/RRF/index.html) for more details.
### 1.3.2 Python installation
ConSReg can be installed by pip:
```shell
pip install ConSReg
```
Sometime rpy2 may throw out error message when imported in Python. This problem may arise because rpy2 was built with the R version that is different from the one it is linked to when imported in Python. To fix this, you may remove rpy2 package then reinstall it with 'no-cache-dir' flag:
```shell
pip install ConSReg --no-cache-dir
```
Alternatively, you may want to install ConSReg in development mode to be able to edit the package by yourself. To do so, simply `git clone` this repository and then under the directory that contains `setup.py`, type in:
```shell
pip install -e .
```
## 2. Sample datasets
Sample datasets can be found in `data` folder.
## 3. Analysis
We provide code for analyzing the sample datasets in two jupyter notebooks located in the root folder of this project: **bulk_analysis.ipynb** (for bulk RNA-seq data) and **single_cell_analysis.ipynb** (for single cell RNA-seq data).
## 4. Publication
Please cite the followint paper if you use ConSReg in your research:
Qi Song, Jiyoung Lee, Shamima Akter, Ruth Grene, Song Li. "Prediction of condition-specific regulatory genes using machine learning." Nucleic acids research 48.11 (2020): e62-e62.
%package help
Summary: Development documents and examples for ConSReg
Provides: python3-ConSReg-doc
%description help
# ConSReg 1.1.4
[](https://opensource.org/licenses/MIT)
Condition-specific regulations
- [ConSReg 1.1.4](#consreg-114)
- [Getting Started](#getting-started)
* [1. Installation](#1-installation)
+ [1.1 Required packages](#11-required-packages)
- [1.1.1 Python](#111-python)
- [1.1.2 R](#112-r)
+ [1.2 Easy installation by Anaconda (recommended)](#12-easy-installation-by-anaconda--recommended-)
+ [1.3 Manual installation (Skip this section if 1.2 is successful)](#13-manual-installation--skip-this-section-if-12-is-successful-)
+ [1.3.1 R installation](#131-r-installation)
- [install R](#install-r)
- [install R packages](#install-r-packages)
+ [1.3.2 Python installation](#132-python-installation)
* [2. Sample datasets](#2-sample-datasets)
* [3. Analysis](#3-analysis)
* [4. Publication](#4-publication)
<small><i><a href='http://ecotrust-canada.github.io/markdown-toc/'>Table of contents generated with markdown-toc</a></i></small>
# Getting Started
## 1. Installation
### 1.1 Required packages
#### 1.1.1 Python
- python = 3.6
- numpy == 1.16.2
- scipy == 1.1.0
- pandas == 0.21.1
- joblib >= 0.11
- rpy2==2.8.6
- networkx >= 2
- sklearn >= 0.19.1
- intervaltree == 2.1.0
#### 1.1.2 R
- ChIPSeeker == 1.16.1
- CoReg == 1.0.1
- gglasso == 1.4
- RRF == 1.9
- R >= 3.5.1
### 1.2 Easy installation by Anaconda (recommended)
Since ConSReg is dependent on both Python and R packages, we recommend installing ConSReg by Anaconda to easily set up the running environment. You may retrive Anaconda from [here](https://www.anaconda.com/) and install the version corresponding to your OS.
Once Anaconda is installed in your OS, run the following commands to create an new environment and install ConSReg and all its dependencies into the new environment:
```bash
conda create -y -n consreg python=3.6 # The new environment name is 'consreg'. You may use other name instead.
conda activate consreg
conda install -y -c bioconda --no-channel-priority bioconductor-chipseeker
conda install -y --no-channel-priority r-base r-essentials
conda install -y --no-channel-priority -c conda-forge r-gglasso r-rrf r-devtools
pip install ConSReg
```
Then ConSReg environment can be activated by `conda activate consreg` and disabled by `conda deactivate`
### 1.3 Manual installation (Skip this section if 1.2 is successful)
### 1.3.1 R installation
#### install R
If R is not already installed, you may follow these steps to build R from source code. Otherwise, you may skip this section and start from 1.2.2
First, disable any conda environment, if there is an active one.
```shell
conda deactivate
```
Download R source code from CRAN (https://cran.r-project.org/). You may use any version you like. It is recommended to use R version > 3.0.0. This ensures that rpy2 works correctly with R.
```shell
# Download R 3.6.1
wget https://cran.r-project.org/src/base/R-3/R-3.6.1.tar.gz
```
Decompress the downloaded file
```shell
tar -zvxf R-3.6.1
```
In the decompressed folder, configure R by:
```shell
./configure prefix=path_to_install_R --enable-R-shlib
```
`--prefix=` specifies a writeable directory to install R into. `--enable-R-shlib` flag was added to build R shared libraries.
In the decompressed folder, compile R
```shell
make
```
Install R into the specified directory:
```shell
make install
```
Add a line to ~/.bashrc to tell the OS where to look for R
```shell
export PATH=path_to_R_bin_directory:$PATH
```
Add the following line to ~/.bashrc. This is for telling rpy2 where to look for dynamic libraries.
```shell
export LD_LIBRARY_PATH=/home/alexsong/R/3.6.1/lib64/R/lib:$LD_LIBRARY_PATH
```
Apply the changes to environment variables `PATH` and `LD_LIBRARY_PATH`:
```shell
source ~/.bashrc
```
#### install R packages
ConSReg requires several R packages: `ChIPseeker`, `CoReg`, `gglasso` and `RRF`.
It is recommended to deactivate any conda environment when installing R packages, as it may add the environment-specific path which may fail the installation. If any conda environment is active, you may deactivate it by:
```shell
conda deactivate
```
To install `ChIPSeeker` from bioconductor, type the following commands in R (for R 3.6 or higher version):
```R
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("ChIPseeker")
```
For older version of R, type the following commands in R:
```R
source("https://bioconductor.org/biocLite.R")
biocLite("ChIPseeker")
```
Please refer to the instructions described [here](https://www.bioconductor.org/packages/release/bioc/html/ChIPseeker.html) for more details.
To install `CoReg` pakcage from GitHub, type the following commands in R environment:
```R
install.packages("devtools")
library(devtools)
install_github("LiLabAtVT/CoReg")
```
Please refer to the GitHub page of `CoReg` project for more details:
[link](https://github.com/LiLabAtVT/CoReg)
To install `gglasso` package from CRAN, type the following commands in R environment:
```R
install.pacakges("gglasso")
```
Please refer to the link [here](https://cran.r-project.org/web/packages/gglasso/index.html) for more details.
To install `RRF` package from CRAN, type the following commands in R environment:
```R
install.pacakges("RRF")
```
Please refer to the link [here](https://cran.r-project.org/web/packages/RRF/index.html) for more details.
### 1.3.2 Python installation
ConSReg can be installed by pip:
```shell
pip install ConSReg
```
Sometime rpy2 may throw out error message when imported in Python. This problem may arise because rpy2 was built with the R version that is different from the one it is linked to when imported in Python. To fix this, you may remove rpy2 package then reinstall it with 'no-cache-dir' flag:
```shell
pip install ConSReg --no-cache-dir
```
Alternatively, you may want to install ConSReg in development mode to be able to edit the package by yourself. To do so, simply `git clone` this repository and then under the directory that contains `setup.py`, type in:
```shell
pip install -e .
```
## 2. Sample datasets
Sample datasets can be found in `data` folder.
## 3. Analysis
We provide code for analyzing the sample datasets in two jupyter notebooks located in the root folder of this project: **bulk_analysis.ipynb** (for bulk RNA-seq data) and **single_cell_analysis.ipynb** (for single cell RNA-seq data).
## 4. Publication
Please cite the followint paper if you use ConSReg in your research:
Qi Song, Jiyoung Lee, Shamima Akter, Ruth Grene, Song Li. "Prediction of condition-specific regulatory genes using machine learning." Nucleic acids research 48.11 (2020): e62-e62.
%prep
%autosetup -n ConSReg-1.1.7
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-ConSReg -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Wed May 31 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.7-1
- Package Spec generated
|