summaryrefslogtreecommitdiff
path: root/python-cox.spec
blob: b06cfd1b18cef3f59ca8d686eff007e163030c70 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
%global _empty_manifest_terminate_build 0
Name:		python-cox
Version:	0.1.post3
Release:	1
Summary:	Tools for Experiment Logging
License:	MIT
URL:		https://github.com/MadryLab/cox
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/44/a5/1e109e189baf5c30cc57f630fd6e2b3fc68ad944008301ffd307b3cec2e1/cox-0.1.post3.tar.gz
BuildArch:	noarch

Requires:	python3-tqdm
Requires:	python3-grpcio
Requires:	python3-psutil
Requires:	python3-gitpython
Requires:	python3-py3nvml

%description
# Cox: An experimental design and analysis framework
You can find API Documentation on Cox [here](https://cox.readthedocs.io), along with a copy of the
Walkthrough below.

## Introduction
Cox is a lightweight, serverless framework for designing and managing
experiments. Inspired by our own struggles with ad-hoc filesystem-based
experiment collection, Cox aims
to be a minimal burden while inducing more organization. Created by [Logan
Engstrom](https://twitter.com/logan_engstrom) and [Andrew
Ilyas](https://twitter.com/andrew_ilyas). 

Cox works by helping you easily __log__, __collect__, and
__analyze__ experimental results. For API documentation, see [here](https://cox.readthedocs.io); below, we
provide a walkthrough that illustrates the most important features of Cox.

__Why "Cox"? (Aside)__: The name Cox draws both from
[Coxswain](https://en.wikipedia.org/wiki/Coxswain), the person in charge of
steering the boat in a rowing crew, and from the name of [Gertrude
Cox](https://en.wikipedia.org/wiki/Gertrude_Mary_Cox), a pioneer of experimental
design.

#### Installation
Cox can by installed via PyPI as:
```bash
pip3 install cox
```

Cox requires Python 3 and has been tested with Python 3.7.

#### Citation
```
@unpublished{cox,
    title={Cox: A Lightweight Experimental Design Library},
    author={Logan Engstrom and Andrew Ilyas},
    year={2019},
    url={https://github.com/MadryLab/cox}
}
```

#### Illustrative example
```python
import os
from cox.store import Store
import shutil
import subprocess
from cox.readers import CollectionReader

"""
Background: suppose we have two functions f(x, param) and g(x, param) that we
want to track as x ranges from 0 to 100, over a set of values for param. We also
want to visualize f(x) with TensorBoard
"""
OUT_DIR = ...
POSSIBLE_PARAM_VALUES = [...]

def f(x, param):
    ...

def g(x, param):
    ...

for param in POSSIBLE_PARAM_VALUES:
    # Creates a cox.Store, which stores a set of tables and a tensorboard
    store = Store(OUT_DIR)
    # Create a table to store hyperparameters in for each run
    store.add_table('metadata', {'param': float})
    # The metadata table will just have a single row with the param stored
    store['metadata'].append_row({'param': param})

    # Create a table to store our results
    store.add_table('results', {'f(x)': float, 'g(x)': float})

    for x in range(100):
	# Log f(x) to the results table and to tensorboard
	store.log_table_and_tb('results', {
	    'f(x)': f(x, param), 
	})
	# Log g(x) to the table but not to TensorBoard. The working row has not
	# changed, so f(x) above and g(x) will be in the same row
	store['results'].update_row({ 'g(x)': g(x, param) })

	# Close the working row
	store['results'].flush_row()

    store.close()

    # Comparing results programmatically with CollectionReader
    reader = CollectionReader(OUT_DIR)
    df = reader.df('results')
    m_df = reader.df('metadata')

    # Filter by experiments have "param" less than 1.0
    exp_ids = set(m_df[m_df['param'] < 1.0]['exp_id].tolist())
    print(df[df['exp_id'].isin(exp_ids)]) # The filtered DataFrame

    # Finding which experiment has lowest minimum f(x)
    exp_id = df[df['results'] == min(df['results'].tolist())]['exp_id'].tolist()[0]
    print(m_df[m_df['exp_id'] == exp_id]) # Metadata of the best experiment

    # Start tensorboard to compare across parameters who match the regex REGEX
    os.system("python -m cox.tensorboard_view --logdir OUT_DIR --format-str p-{param} \ 
	    --filter-param param REGEX --metadata-table metadata"])

```

## Quick Logging Overview 
The cox logging system is designed for dealing with repeated experiments. The
user defines schemas for [Pandas
dataframes](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html)
that contain all the data necessary for each experiment instance. Each
experiment ran corresponds to a __data store__, and each specified dataframe
from above corresponds to a table within this store. The experiment stores are
organized within the same directory. Cox has a number of utilities for running
and collecting data from experiments of this nature.

## Interactive Introduction

We use Cox most in our machine learning work, but Cox is agnostic to the type or
style of code that you write. To illustrate this, we go through an extremely
simple example in a walkthrough.

## Walkthrough 1: Logging in Cox
__Note 1__: you can view all of the components of this running example in the [example file here](examples/logging_example.py)!

__Note 2__: a copy of this walkthrough is also available together with our API
documentation, [here](https://cox.readthedocs.io/en/latest/)

In this walkthrough, we'll be starting with the following simple piece of code,
which tries to finds the minimum of a quadratic function:

```python
import sys

def f(x):
    return (x - 2.03)**2 + 3

x = ...
tol = ...
step = ...

for _ in range(1000):
    # Take a uniform step in the direction of decrease
    if f(x + step) < f(x - step):
        x += step
    else:
        x -= step

    # If the difference between the directions
    # is less than the tolerance, stop
    if f(x + step) - f(x - step) < tol:
        break
```
### Initializing stores
Logging in Cox is done through the `Store` class, which can be created as follows:
```python
from cox.store import Store
# rest of program here...
store = Store(OUT_DIR)
```

Upon construction, the `Store` instance creates a directory with a random `uuid`
generated name in ```OUT_DIR```, a `HDFStore` for storing data, some logging
files, and a tensorboard directory (named `tensorboard`). Therefore, after we run this command, our `OUT_DIR` directory should look something like this:

```bash
$ ls OUT_DIR
7753a944-568d-4cc2-9bb2-9019cc0b3f49
$ ls 7753a944-568d-4cc2-9bb2-9019cc0b3f49
save        store.h5    tensorboard
```

The experiment ID string `7753a944-568d-4cc2-9bb2-9019cc0b3f49` was
autogenerated. If we wanted to name the experiment something else, we could pass
it as the second parameter; i.e. making a store with `Store(OUT_DIR, 'exp1')`
would make the corresponding experiment ID `exp1`.


### Creating tables
The next step is to declare the data we want to store via _tables_. We can add
arbitrary tables according to our needs, but we need to specify the structure
ahead of time by passing the schema. In our case, we will start out with just a
simple metadata table containing the parameters used to run an instance of the
program above, along with a table for writing the result:

```python
store.add_table('metadata', {
  'step_size': float,
  'tolerance': float, 
  'initial_x': float,
  'out_dir': str
})

store.add_table('result', {
    'final_x': float,
    'final_opt':float
})

```

Each table corresponds exactly to a [Pandas dataframe](https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.DataFrame.html) found in an `HDFStore`
object.

#### Note on serialization
Cox supports basic object types (like `float`, `int`, `str`, etc) along with any
kind of serializable object (via `dill` or using PyTorch's serialization
method). In particular, if we want to serialize an object we can pass one of the
following types: `cox.store.[OBJECT|PICKLE|PYTORCH_STATE]` as the type value
that is mapped to in the schema dictionary. `cox.store.PYTORCH_STATE` is
particularly useful for dealing with PyTorch objects like weights.
In detail: `OBJECT` corresponds to storing the object as a
serialized string in the table, `PICKLE` corresponds to storing the object as a
serialized string on disk in a separate file, and `PYTORCH_STATE` corresponds to
storing the object as a serialized string on disk using `torch.save`. 

### Logging
Now that we have a table, we can write rows to it! Logging in Cox is done in a
row-by-row manner: at any time, there is a _working row_ that can be appended
to/updated; the row can then be flushed (i.e. written to the file), which starts
a new (empty) working row. The relevant commands are:

```python
# This updates the working row, but does not write it permenantly yet!
store['result'].update_row({
  "final_x": 3.0
})

# This updates it again
store['result'].update_row({
  "final_opt": 3.9409
})

# Write the row permenantly, and start a new working row!
store['result'].flush_row()

# A shortcut for appending a row directly
store['metadata'].append_row({
  'step_size': 0.01,
  'tolerance': 1e-6, 
  'initial_x': 1.0,
  'out_dir': '/tmp/'
}) 
```

#### Incremental updates with `update_row`
Subsequent calls to update_row will edit the same working row. 
This is useful if different parts of the row are computed in different 
functions/locations in the code, as it removes the need for passing statistics 
around all over the place.

### Reading data
By populating tables rows, we are really just adding rows to an underlying
`HDFStore` table. If we want to read the store later, we can simply open another
store at the same location, and then read dataframes with simple commands:

```python
# Note that EXP_ID is the directory the store wrote to in OUT_DIR
s = Store(OUT_DIR, EXP_ID)

# Read tables we wrote earlier
metadata = s['metadata'].df
result = s['result'].df

print(result)
```

Inspecting the `result` table, we see the expected result in our Pandas dataframe!
```
     final_x   final_opt
0   3.000000   3.940900
```

### `CollectionReader`: Reading many experiments at once
Now, in our quadratic example, we aren't just going to try one set of
parameters, we are going to try a number of different values for `step_size`,
`tolerance`, and `initial_x`, as we have not yet discovered convex optimization.
To do this, we just run the script above a bunch of times with the desired
hyperparameters,  supplying the _same_ `OUT_DIR` for all of the runs (recall
that `cox` will automatically create different, `uuid`-named folders inside
`OUT_DIR` for each experiment).

Imagine that we have done so (using any standard tool, e.g. `sbatch` in SLURM,
`sklearn` grid search, etc.), and that we have a directory full of stores (this
is why we use `uuid`s instead of handpicked names!):

```bash
$ ls $OUT_DIR
drwxr-xr-x  6 engstrom  0424807a-c9c0-4974-b881-f927fc5ae7c3
...
...
drwxr-xr-x  6 engstrom  e3646fcf-569b-46fc-aba5-1e9734fedbcf
drwxr-xr-x  6 engstrom  f23d6da4-e3f9-48af-aa49-82f5c017e14f
```

Now, we want to collect all the results from this directory. We can use
`cox.readers.CollectionReader` to read all the tables together in a concatenated
`pandas` table.

```python
from cox.readers import CollectionReader
reader = CollectionReader(OUT_DIR)
print(reader.df('result'))
```

Which gives us all the `result` tables concatenated together as a 
[Pandas DataFrame](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html) for easy manipulation:

```
     final_x   final_opt                                exp_id
0   1.000000    4.060900  ed892c4f-069f-4a6d-9775-be8fdfce4713
0   0.000010    7.120859  44ea3334-d2b4-47fe-830c-2d13dc0e7aaa
...
...
0   2.000000    3.000900  f031fc42-8788-4876-8c96-2c1237ceb63d
0 -14.000000  259.960900  73181d27-2928-48ec-9ac6-744837616c4b
```

`pandas` has a ton of powerful utilities for searching through and
manipulating DataFrames. We recommend looking at [their
docs](https://pandas.pydata.org/pandas-docs/stable/reference/api/) for
information on how to do this. For convenience, we've given a few simple
examples below:

```python
df = reader.df('result')
m_df = reader.df('metadata')

# Filter by experiments have step_size less than 1.0
exp_ids = set(m_df[m_df['step_size'] < 1.0]['exp_id].tolist())
print(df[df['exp_id'].isin(exp_ids)]) # The filtered DataFrame

# Finding which experiment has the lowest final_opt
exp_id = df[df['final_opt'] == min(df['final_opt'].tolist())]['exp_id'].tolist()[0]
print(m_df[m_df['exp_id'] == exp_id]) # Metadata of the best experiment
```

## Walkthrough 2: Using `cox` with `tensorboardX`
__Note__: As with the first walkthrough, a working example file with all of
these commands can be found [here](examples/tb_example.py)

Here, we'll show how to use `cox` and `tensorboardX` in unison for logging.
We'll use the following simple running example:
```python
from cox.store import Store

for slope in range(5):
    s = Store(OUT_DIR) # Create OUT_DIR/RANDOM_UUID
    s.add_table('line_graphs', {'mx': int, 'mx^2': int})
    s.add_table('metadata', {'slope': int})
    s['metadata'].append_row({'slope': slope})

    # GOAL: plot and log the lines "y=slope*x" and "y=slope*x^2"
```

As previously mentioned, `cox.Store` objects also automatically creates a
`tensorboard` folder that is written to via the
[tensorboardX](https://tensorboardx.readthedocs.io/en/latest/tensorboard.html)
library. A created `cox.store.Store` object will actually a `writer` property
that is a fully functioning
[SummaryWriter](https://tensorboardx.readthedocs.io/en/latest/tensorboard.html#tensorboardX.SummaryWriter)
object. That means we can plot the lines we want in TensorBoard as follows:

```python
for x in range(10):
    s.writer.add_scalar('line', slope*x, x)
    s.writer.add_scalar('parabola', slope*(x**2), x)
```

Unfortunately, TensorBoard data is quite hard to read/manipulate through means
other than the TensorBoard interface. For convenience, the `store` object also
provides the ability to write to a table and the `tensorboardX` writer at the same
time through the `log_table_and_tb` function, meaning that we can replace the
above with:

```python
# Does the same thing as the example above but also stores the results in a
# readable 'line_graphs' table 
for x in range(10):
    s.log_table_and_tb('line_graphs', {'mx': slope*x, 'mx^2': slope*(x**2)})
    s['line_graphs'].flush_row()
```

### Viewing multiple tensorboards with `cox.tensorboard_view`
**Note: the `python -m cox.tensorboard_view` command can be called as
`cox-tensorboard` from the command line**

Continuing with our running example, we may now want to visually compare
TensorBoards across multiple parameter settings. Fortunately, `cox`
provides utilities for comparing TensorBoards across experiments in a readable
way.  In our example, where we made a `Store` object and a table
called `metadata` where we stored hyperparameters. We also showed how to
integrate TensorBoard logging via `tensorboardX`. We'll now use the
`cox.tensorboard-view` utility to view the tensorboards from multiple jobs at
once (this is useful when comparing parameters for a grid search).

The way to achieve this is through the `cox.tensorboard_view` command, which is
called as `python3 -m cox.tensorboard_view` with the following arguments:

- `--logdir`: **(required)**, the directory where all of the stores are located
- `--port`: **(default 6006)**, the port on which to run the tensorboard server
- `--metadata-table` **(default "metadata")**, the name of the table where the
  hyperparameters are saved (i.e. "metadata" in our running example). This
should be a table with a single row, as in our running example.
- `--filter-param` **(optional)** Can be used more than once, filters out stores
  from the tensorboard aggregation. For each argument of the form
`--filter-param PARAM_NAME PARAM_REGEX`, only the stores where `PARAM_NAME` in
the metadata matches `PARAM_REGEX` will be kept.
- `--format-str` **(required)** How to display the name of the stores. Recall
  that each store has a `uuid`-generated name by default. This argument
determines how their names will be displayed in the TensorBoard. Curly braces
represent parameter values, and the uuid will always be appended to the name. So
in our running example, `--format-str ss-{step_size}` will result in a
TensorBoard with names of the form `ss-1.0-ed892c4f-069f-4a6d-9775-be8fdfce4713`.

So in our running example, if we run the following command, displaying the slope
in the TensorBoard names and filtering for slopes between 1 and 3:
```bash
python3 -m cox.tensorboard_view --logdir OUT_DIR --format-str slope-{slope} \
    --filter-param slope [1-3] --metadata-table metadata
```
or 
```bash
cox-tensorboard --logdir OUT_DIR --format-str slope-{slope} \
    --filter-param slope [1-3] --metadata-table metadata
```
then navigating to `localhost:6006` yields:

![TensorBoard view](docs/_static/tensorboard.png)




%package -n python3-cox
Summary:	Tools for Experiment Logging
Provides:	python-cox
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-cox
# Cox: An experimental design and analysis framework
You can find API Documentation on Cox [here](https://cox.readthedocs.io), along with a copy of the
Walkthrough below.

## Introduction
Cox is a lightweight, serverless framework for designing and managing
experiments. Inspired by our own struggles with ad-hoc filesystem-based
experiment collection, Cox aims
to be a minimal burden while inducing more organization. Created by [Logan
Engstrom](https://twitter.com/logan_engstrom) and [Andrew
Ilyas](https://twitter.com/andrew_ilyas). 

Cox works by helping you easily __log__, __collect__, and
__analyze__ experimental results. For API documentation, see [here](https://cox.readthedocs.io); below, we
provide a walkthrough that illustrates the most important features of Cox.

__Why "Cox"? (Aside)__: The name Cox draws both from
[Coxswain](https://en.wikipedia.org/wiki/Coxswain), the person in charge of
steering the boat in a rowing crew, and from the name of [Gertrude
Cox](https://en.wikipedia.org/wiki/Gertrude_Mary_Cox), a pioneer of experimental
design.

#### Installation
Cox can by installed via PyPI as:
```bash
pip3 install cox
```

Cox requires Python 3 and has been tested with Python 3.7.

#### Citation
```
@unpublished{cox,
    title={Cox: A Lightweight Experimental Design Library},
    author={Logan Engstrom and Andrew Ilyas},
    year={2019},
    url={https://github.com/MadryLab/cox}
}
```

#### Illustrative example
```python
import os
from cox.store import Store
import shutil
import subprocess
from cox.readers import CollectionReader

"""
Background: suppose we have two functions f(x, param) and g(x, param) that we
want to track as x ranges from 0 to 100, over a set of values for param. We also
want to visualize f(x) with TensorBoard
"""
OUT_DIR = ...
POSSIBLE_PARAM_VALUES = [...]

def f(x, param):
    ...

def g(x, param):
    ...

for param in POSSIBLE_PARAM_VALUES:
    # Creates a cox.Store, which stores a set of tables and a tensorboard
    store = Store(OUT_DIR)
    # Create a table to store hyperparameters in for each run
    store.add_table('metadata', {'param': float})
    # The metadata table will just have a single row with the param stored
    store['metadata'].append_row({'param': param})

    # Create a table to store our results
    store.add_table('results', {'f(x)': float, 'g(x)': float})

    for x in range(100):
	# Log f(x) to the results table and to tensorboard
	store.log_table_and_tb('results', {
	    'f(x)': f(x, param), 
	})
	# Log g(x) to the table but not to TensorBoard. The working row has not
	# changed, so f(x) above and g(x) will be in the same row
	store['results'].update_row({ 'g(x)': g(x, param) })

	# Close the working row
	store['results'].flush_row()

    store.close()

    # Comparing results programmatically with CollectionReader
    reader = CollectionReader(OUT_DIR)
    df = reader.df('results')
    m_df = reader.df('metadata')

    # Filter by experiments have "param" less than 1.0
    exp_ids = set(m_df[m_df['param'] < 1.0]['exp_id].tolist())
    print(df[df['exp_id'].isin(exp_ids)]) # The filtered DataFrame

    # Finding which experiment has lowest minimum f(x)
    exp_id = df[df['results'] == min(df['results'].tolist())]['exp_id'].tolist()[0]
    print(m_df[m_df['exp_id'] == exp_id]) # Metadata of the best experiment

    # Start tensorboard to compare across parameters who match the regex REGEX
    os.system("python -m cox.tensorboard_view --logdir OUT_DIR --format-str p-{param} \ 
	    --filter-param param REGEX --metadata-table metadata"])

```

## Quick Logging Overview 
The cox logging system is designed for dealing with repeated experiments. The
user defines schemas for [Pandas
dataframes](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html)
that contain all the data necessary for each experiment instance. Each
experiment ran corresponds to a __data store__, and each specified dataframe
from above corresponds to a table within this store. The experiment stores are
organized within the same directory. Cox has a number of utilities for running
and collecting data from experiments of this nature.

## Interactive Introduction

We use Cox most in our machine learning work, but Cox is agnostic to the type or
style of code that you write. To illustrate this, we go through an extremely
simple example in a walkthrough.

## Walkthrough 1: Logging in Cox
__Note 1__: you can view all of the components of this running example in the [example file here](examples/logging_example.py)!

__Note 2__: a copy of this walkthrough is also available together with our API
documentation, [here](https://cox.readthedocs.io/en/latest/)

In this walkthrough, we'll be starting with the following simple piece of code,
which tries to finds the minimum of a quadratic function:

```python
import sys

def f(x):
    return (x - 2.03)**2 + 3

x = ...
tol = ...
step = ...

for _ in range(1000):
    # Take a uniform step in the direction of decrease
    if f(x + step) < f(x - step):
        x += step
    else:
        x -= step

    # If the difference between the directions
    # is less than the tolerance, stop
    if f(x + step) - f(x - step) < tol:
        break
```
### Initializing stores
Logging in Cox is done through the `Store` class, which can be created as follows:
```python
from cox.store import Store
# rest of program here...
store = Store(OUT_DIR)
```

Upon construction, the `Store` instance creates a directory with a random `uuid`
generated name in ```OUT_DIR```, a `HDFStore` for storing data, some logging
files, and a tensorboard directory (named `tensorboard`). Therefore, after we run this command, our `OUT_DIR` directory should look something like this:

```bash
$ ls OUT_DIR
7753a944-568d-4cc2-9bb2-9019cc0b3f49
$ ls 7753a944-568d-4cc2-9bb2-9019cc0b3f49
save        store.h5    tensorboard
```

The experiment ID string `7753a944-568d-4cc2-9bb2-9019cc0b3f49` was
autogenerated. If we wanted to name the experiment something else, we could pass
it as the second parameter; i.e. making a store with `Store(OUT_DIR, 'exp1')`
would make the corresponding experiment ID `exp1`.


### Creating tables
The next step is to declare the data we want to store via _tables_. We can add
arbitrary tables according to our needs, but we need to specify the structure
ahead of time by passing the schema. In our case, we will start out with just a
simple metadata table containing the parameters used to run an instance of the
program above, along with a table for writing the result:

```python
store.add_table('metadata', {
  'step_size': float,
  'tolerance': float, 
  'initial_x': float,
  'out_dir': str
})

store.add_table('result', {
    'final_x': float,
    'final_opt':float
})

```

Each table corresponds exactly to a [Pandas dataframe](https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.DataFrame.html) found in an `HDFStore`
object.

#### Note on serialization
Cox supports basic object types (like `float`, `int`, `str`, etc) along with any
kind of serializable object (via `dill` or using PyTorch's serialization
method). In particular, if we want to serialize an object we can pass one of the
following types: `cox.store.[OBJECT|PICKLE|PYTORCH_STATE]` as the type value
that is mapped to in the schema dictionary. `cox.store.PYTORCH_STATE` is
particularly useful for dealing with PyTorch objects like weights.
In detail: `OBJECT` corresponds to storing the object as a
serialized string in the table, `PICKLE` corresponds to storing the object as a
serialized string on disk in a separate file, and `PYTORCH_STATE` corresponds to
storing the object as a serialized string on disk using `torch.save`. 

### Logging
Now that we have a table, we can write rows to it! Logging in Cox is done in a
row-by-row manner: at any time, there is a _working row_ that can be appended
to/updated; the row can then be flushed (i.e. written to the file), which starts
a new (empty) working row. The relevant commands are:

```python
# This updates the working row, but does not write it permenantly yet!
store['result'].update_row({
  "final_x": 3.0
})

# This updates it again
store['result'].update_row({
  "final_opt": 3.9409
})

# Write the row permenantly, and start a new working row!
store['result'].flush_row()

# A shortcut for appending a row directly
store['metadata'].append_row({
  'step_size': 0.01,
  'tolerance': 1e-6, 
  'initial_x': 1.0,
  'out_dir': '/tmp/'
}) 
```

#### Incremental updates with `update_row`
Subsequent calls to update_row will edit the same working row. 
This is useful if different parts of the row are computed in different 
functions/locations in the code, as it removes the need for passing statistics 
around all over the place.

### Reading data
By populating tables rows, we are really just adding rows to an underlying
`HDFStore` table. If we want to read the store later, we can simply open another
store at the same location, and then read dataframes with simple commands:

```python
# Note that EXP_ID is the directory the store wrote to in OUT_DIR
s = Store(OUT_DIR, EXP_ID)

# Read tables we wrote earlier
metadata = s['metadata'].df
result = s['result'].df

print(result)
```

Inspecting the `result` table, we see the expected result in our Pandas dataframe!
```
     final_x   final_opt
0   3.000000   3.940900
```

### `CollectionReader`: Reading many experiments at once
Now, in our quadratic example, we aren't just going to try one set of
parameters, we are going to try a number of different values for `step_size`,
`tolerance`, and `initial_x`, as we have not yet discovered convex optimization.
To do this, we just run the script above a bunch of times with the desired
hyperparameters,  supplying the _same_ `OUT_DIR` for all of the runs (recall
that `cox` will automatically create different, `uuid`-named folders inside
`OUT_DIR` for each experiment).

Imagine that we have done so (using any standard tool, e.g. `sbatch` in SLURM,
`sklearn` grid search, etc.), and that we have a directory full of stores (this
is why we use `uuid`s instead of handpicked names!):

```bash
$ ls $OUT_DIR
drwxr-xr-x  6 engstrom  0424807a-c9c0-4974-b881-f927fc5ae7c3
...
...
drwxr-xr-x  6 engstrom  e3646fcf-569b-46fc-aba5-1e9734fedbcf
drwxr-xr-x  6 engstrom  f23d6da4-e3f9-48af-aa49-82f5c017e14f
```

Now, we want to collect all the results from this directory. We can use
`cox.readers.CollectionReader` to read all the tables together in a concatenated
`pandas` table.

```python
from cox.readers import CollectionReader
reader = CollectionReader(OUT_DIR)
print(reader.df('result'))
```

Which gives us all the `result` tables concatenated together as a 
[Pandas DataFrame](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html) for easy manipulation:

```
     final_x   final_opt                                exp_id
0   1.000000    4.060900  ed892c4f-069f-4a6d-9775-be8fdfce4713
0   0.000010    7.120859  44ea3334-d2b4-47fe-830c-2d13dc0e7aaa
...
...
0   2.000000    3.000900  f031fc42-8788-4876-8c96-2c1237ceb63d
0 -14.000000  259.960900  73181d27-2928-48ec-9ac6-744837616c4b
```

`pandas` has a ton of powerful utilities for searching through and
manipulating DataFrames. We recommend looking at [their
docs](https://pandas.pydata.org/pandas-docs/stable/reference/api/) for
information on how to do this. For convenience, we've given a few simple
examples below:

```python
df = reader.df('result')
m_df = reader.df('metadata')

# Filter by experiments have step_size less than 1.0
exp_ids = set(m_df[m_df['step_size'] < 1.0]['exp_id].tolist())
print(df[df['exp_id'].isin(exp_ids)]) # The filtered DataFrame

# Finding which experiment has the lowest final_opt
exp_id = df[df['final_opt'] == min(df['final_opt'].tolist())]['exp_id'].tolist()[0]
print(m_df[m_df['exp_id'] == exp_id]) # Metadata of the best experiment
```

## Walkthrough 2: Using `cox` with `tensorboardX`
__Note__: As with the first walkthrough, a working example file with all of
these commands can be found [here](examples/tb_example.py)

Here, we'll show how to use `cox` and `tensorboardX` in unison for logging.
We'll use the following simple running example:
```python
from cox.store import Store

for slope in range(5):
    s = Store(OUT_DIR) # Create OUT_DIR/RANDOM_UUID
    s.add_table('line_graphs', {'mx': int, 'mx^2': int})
    s.add_table('metadata', {'slope': int})
    s['metadata'].append_row({'slope': slope})

    # GOAL: plot and log the lines "y=slope*x" and "y=slope*x^2"
```

As previously mentioned, `cox.Store` objects also automatically creates a
`tensorboard` folder that is written to via the
[tensorboardX](https://tensorboardx.readthedocs.io/en/latest/tensorboard.html)
library. A created `cox.store.Store` object will actually a `writer` property
that is a fully functioning
[SummaryWriter](https://tensorboardx.readthedocs.io/en/latest/tensorboard.html#tensorboardX.SummaryWriter)
object. That means we can plot the lines we want in TensorBoard as follows:

```python
for x in range(10):
    s.writer.add_scalar('line', slope*x, x)
    s.writer.add_scalar('parabola', slope*(x**2), x)
```

Unfortunately, TensorBoard data is quite hard to read/manipulate through means
other than the TensorBoard interface. For convenience, the `store` object also
provides the ability to write to a table and the `tensorboardX` writer at the same
time through the `log_table_and_tb` function, meaning that we can replace the
above with:

```python
# Does the same thing as the example above but also stores the results in a
# readable 'line_graphs' table 
for x in range(10):
    s.log_table_and_tb('line_graphs', {'mx': slope*x, 'mx^2': slope*(x**2)})
    s['line_graphs'].flush_row()
```

### Viewing multiple tensorboards with `cox.tensorboard_view`
**Note: the `python -m cox.tensorboard_view` command can be called as
`cox-tensorboard` from the command line**

Continuing with our running example, we may now want to visually compare
TensorBoards across multiple parameter settings. Fortunately, `cox`
provides utilities for comparing TensorBoards across experiments in a readable
way.  In our example, where we made a `Store` object and a table
called `metadata` where we stored hyperparameters. We also showed how to
integrate TensorBoard logging via `tensorboardX`. We'll now use the
`cox.tensorboard-view` utility to view the tensorboards from multiple jobs at
once (this is useful when comparing parameters for a grid search).

The way to achieve this is through the `cox.tensorboard_view` command, which is
called as `python3 -m cox.tensorboard_view` with the following arguments:

- `--logdir`: **(required)**, the directory where all of the stores are located
- `--port`: **(default 6006)**, the port on which to run the tensorboard server
- `--metadata-table` **(default "metadata")**, the name of the table where the
  hyperparameters are saved (i.e. "metadata" in our running example). This
should be a table with a single row, as in our running example.
- `--filter-param` **(optional)** Can be used more than once, filters out stores
  from the tensorboard aggregation. For each argument of the form
`--filter-param PARAM_NAME PARAM_REGEX`, only the stores where `PARAM_NAME` in
the metadata matches `PARAM_REGEX` will be kept.
- `--format-str` **(required)** How to display the name of the stores. Recall
  that each store has a `uuid`-generated name by default. This argument
determines how their names will be displayed in the TensorBoard. Curly braces
represent parameter values, and the uuid will always be appended to the name. So
in our running example, `--format-str ss-{step_size}` will result in a
TensorBoard with names of the form `ss-1.0-ed892c4f-069f-4a6d-9775-be8fdfce4713`.

So in our running example, if we run the following command, displaying the slope
in the TensorBoard names and filtering for slopes between 1 and 3:
```bash
python3 -m cox.tensorboard_view --logdir OUT_DIR --format-str slope-{slope} \
    --filter-param slope [1-3] --metadata-table metadata
```
or 
```bash
cox-tensorboard --logdir OUT_DIR --format-str slope-{slope} \
    --filter-param slope [1-3] --metadata-table metadata
```
then navigating to `localhost:6006` yields:

![TensorBoard view](docs/_static/tensorboard.png)




%package help
Summary:	Development documents and examples for cox
Provides:	python3-cox-doc
%description help
# Cox: An experimental design and analysis framework
You can find API Documentation on Cox [here](https://cox.readthedocs.io), along with a copy of the
Walkthrough below.

## Introduction
Cox is a lightweight, serverless framework for designing and managing
experiments. Inspired by our own struggles with ad-hoc filesystem-based
experiment collection, Cox aims
to be a minimal burden while inducing more organization. Created by [Logan
Engstrom](https://twitter.com/logan_engstrom) and [Andrew
Ilyas](https://twitter.com/andrew_ilyas). 

Cox works by helping you easily __log__, __collect__, and
__analyze__ experimental results. For API documentation, see [here](https://cox.readthedocs.io); below, we
provide a walkthrough that illustrates the most important features of Cox.

__Why "Cox"? (Aside)__: The name Cox draws both from
[Coxswain](https://en.wikipedia.org/wiki/Coxswain), the person in charge of
steering the boat in a rowing crew, and from the name of [Gertrude
Cox](https://en.wikipedia.org/wiki/Gertrude_Mary_Cox), a pioneer of experimental
design.

#### Installation
Cox can by installed via PyPI as:
```bash
pip3 install cox
```

Cox requires Python 3 and has been tested with Python 3.7.

#### Citation
```
@unpublished{cox,
    title={Cox: A Lightweight Experimental Design Library},
    author={Logan Engstrom and Andrew Ilyas},
    year={2019},
    url={https://github.com/MadryLab/cox}
}
```

#### Illustrative example
```python
import os
from cox.store import Store
import shutil
import subprocess
from cox.readers import CollectionReader

"""
Background: suppose we have two functions f(x, param) and g(x, param) that we
want to track as x ranges from 0 to 100, over a set of values for param. We also
want to visualize f(x) with TensorBoard
"""
OUT_DIR = ...
POSSIBLE_PARAM_VALUES = [...]

def f(x, param):
    ...

def g(x, param):
    ...

for param in POSSIBLE_PARAM_VALUES:
    # Creates a cox.Store, which stores a set of tables and a tensorboard
    store = Store(OUT_DIR)
    # Create a table to store hyperparameters in for each run
    store.add_table('metadata', {'param': float})
    # The metadata table will just have a single row with the param stored
    store['metadata'].append_row({'param': param})

    # Create a table to store our results
    store.add_table('results', {'f(x)': float, 'g(x)': float})

    for x in range(100):
	# Log f(x) to the results table and to tensorboard
	store.log_table_and_tb('results', {
	    'f(x)': f(x, param), 
	})
	# Log g(x) to the table but not to TensorBoard. The working row has not
	# changed, so f(x) above and g(x) will be in the same row
	store['results'].update_row({ 'g(x)': g(x, param) })

	# Close the working row
	store['results'].flush_row()

    store.close()

    # Comparing results programmatically with CollectionReader
    reader = CollectionReader(OUT_DIR)
    df = reader.df('results')
    m_df = reader.df('metadata')

    # Filter by experiments have "param" less than 1.0
    exp_ids = set(m_df[m_df['param'] < 1.0]['exp_id].tolist())
    print(df[df['exp_id'].isin(exp_ids)]) # The filtered DataFrame

    # Finding which experiment has lowest minimum f(x)
    exp_id = df[df['results'] == min(df['results'].tolist())]['exp_id'].tolist()[0]
    print(m_df[m_df['exp_id'] == exp_id]) # Metadata of the best experiment

    # Start tensorboard to compare across parameters who match the regex REGEX
    os.system("python -m cox.tensorboard_view --logdir OUT_DIR --format-str p-{param} \ 
	    --filter-param param REGEX --metadata-table metadata"])

```

## Quick Logging Overview 
The cox logging system is designed for dealing with repeated experiments. The
user defines schemas for [Pandas
dataframes](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html)
that contain all the data necessary for each experiment instance. Each
experiment ran corresponds to a __data store__, and each specified dataframe
from above corresponds to a table within this store. The experiment stores are
organized within the same directory. Cox has a number of utilities for running
and collecting data from experiments of this nature.

## Interactive Introduction

We use Cox most in our machine learning work, but Cox is agnostic to the type or
style of code that you write. To illustrate this, we go through an extremely
simple example in a walkthrough.

## Walkthrough 1: Logging in Cox
__Note 1__: you can view all of the components of this running example in the [example file here](examples/logging_example.py)!

__Note 2__: a copy of this walkthrough is also available together with our API
documentation, [here](https://cox.readthedocs.io/en/latest/)

In this walkthrough, we'll be starting with the following simple piece of code,
which tries to finds the minimum of a quadratic function:

```python
import sys

def f(x):
    return (x - 2.03)**2 + 3

x = ...
tol = ...
step = ...

for _ in range(1000):
    # Take a uniform step in the direction of decrease
    if f(x + step) < f(x - step):
        x += step
    else:
        x -= step

    # If the difference between the directions
    # is less than the tolerance, stop
    if f(x + step) - f(x - step) < tol:
        break
```
### Initializing stores
Logging in Cox is done through the `Store` class, which can be created as follows:
```python
from cox.store import Store
# rest of program here...
store = Store(OUT_DIR)
```

Upon construction, the `Store` instance creates a directory with a random `uuid`
generated name in ```OUT_DIR```, a `HDFStore` for storing data, some logging
files, and a tensorboard directory (named `tensorboard`). Therefore, after we run this command, our `OUT_DIR` directory should look something like this:

```bash
$ ls OUT_DIR
7753a944-568d-4cc2-9bb2-9019cc0b3f49
$ ls 7753a944-568d-4cc2-9bb2-9019cc0b3f49
save        store.h5    tensorboard
```

The experiment ID string `7753a944-568d-4cc2-9bb2-9019cc0b3f49` was
autogenerated. If we wanted to name the experiment something else, we could pass
it as the second parameter; i.e. making a store with `Store(OUT_DIR, 'exp1')`
would make the corresponding experiment ID `exp1`.


### Creating tables
The next step is to declare the data we want to store via _tables_. We can add
arbitrary tables according to our needs, but we need to specify the structure
ahead of time by passing the schema. In our case, we will start out with just a
simple metadata table containing the parameters used to run an instance of the
program above, along with a table for writing the result:

```python
store.add_table('metadata', {
  'step_size': float,
  'tolerance': float, 
  'initial_x': float,
  'out_dir': str
})

store.add_table('result', {
    'final_x': float,
    'final_opt':float
})

```

Each table corresponds exactly to a [Pandas dataframe](https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.DataFrame.html) found in an `HDFStore`
object.

#### Note on serialization
Cox supports basic object types (like `float`, `int`, `str`, etc) along with any
kind of serializable object (via `dill` or using PyTorch's serialization
method). In particular, if we want to serialize an object we can pass one of the
following types: `cox.store.[OBJECT|PICKLE|PYTORCH_STATE]` as the type value
that is mapped to in the schema dictionary. `cox.store.PYTORCH_STATE` is
particularly useful for dealing with PyTorch objects like weights.
In detail: `OBJECT` corresponds to storing the object as a
serialized string in the table, `PICKLE` corresponds to storing the object as a
serialized string on disk in a separate file, and `PYTORCH_STATE` corresponds to
storing the object as a serialized string on disk using `torch.save`. 

### Logging
Now that we have a table, we can write rows to it! Logging in Cox is done in a
row-by-row manner: at any time, there is a _working row_ that can be appended
to/updated; the row can then be flushed (i.e. written to the file), which starts
a new (empty) working row. The relevant commands are:

```python
# This updates the working row, but does not write it permenantly yet!
store['result'].update_row({
  "final_x": 3.0
})

# This updates it again
store['result'].update_row({
  "final_opt": 3.9409
})

# Write the row permenantly, and start a new working row!
store['result'].flush_row()

# A shortcut for appending a row directly
store['metadata'].append_row({
  'step_size': 0.01,
  'tolerance': 1e-6, 
  'initial_x': 1.0,
  'out_dir': '/tmp/'
}) 
```

#### Incremental updates with `update_row`
Subsequent calls to update_row will edit the same working row. 
This is useful if different parts of the row are computed in different 
functions/locations in the code, as it removes the need for passing statistics 
around all over the place.

### Reading data
By populating tables rows, we are really just adding rows to an underlying
`HDFStore` table. If we want to read the store later, we can simply open another
store at the same location, and then read dataframes with simple commands:

```python
# Note that EXP_ID is the directory the store wrote to in OUT_DIR
s = Store(OUT_DIR, EXP_ID)

# Read tables we wrote earlier
metadata = s['metadata'].df
result = s['result'].df

print(result)
```

Inspecting the `result` table, we see the expected result in our Pandas dataframe!
```
     final_x   final_opt
0   3.000000   3.940900
```

### `CollectionReader`: Reading many experiments at once
Now, in our quadratic example, we aren't just going to try one set of
parameters, we are going to try a number of different values for `step_size`,
`tolerance`, and `initial_x`, as we have not yet discovered convex optimization.
To do this, we just run the script above a bunch of times with the desired
hyperparameters,  supplying the _same_ `OUT_DIR` for all of the runs (recall
that `cox` will automatically create different, `uuid`-named folders inside
`OUT_DIR` for each experiment).

Imagine that we have done so (using any standard tool, e.g. `sbatch` in SLURM,
`sklearn` grid search, etc.), and that we have a directory full of stores (this
is why we use `uuid`s instead of handpicked names!):

```bash
$ ls $OUT_DIR
drwxr-xr-x  6 engstrom  0424807a-c9c0-4974-b881-f927fc5ae7c3
...
...
drwxr-xr-x  6 engstrom  e3646fcf-569b-46fc-aba5-1e9734fedbcf
drwxr-xr-x  6 engstrom  f23d6da4-e3f9-48af-aa49-82f5c017e14f
```

Now, we want to collect all the results from this directory. We can use
`cox.readers.CollectionReader` to read all the tables together in a concatenated
`pandas` table.

```python
from cox.readers import CollectionReader
reader = CollectionReader(OUT_DIR)
print(reader.df('result'))
```

Which gives us all the `result` tables concatenated together as a 
[Pandas DataFrame](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html) for easy manipulation:

```
     final_x   final_opt                                exp_id
0   1.000000    4.060900  ed892c4f-069f-4a6d-9775-be8fdfce4713
0   0.000010    7.120859  44ea3334-d2b4-47fe-830c-2d13dc0e7aaa
...
...
0   2.000000    3.000900  f031fc42-8788-4876-8c96-2c1237ceb63d
0 -14.000000  259.960900  73181d27-2928-48ec-9ac6-744837616c4b
```

`pandas` has a ton of powerful utilities for searching through and
manipulating DataFrames. We recommend looking at [their
docs](https://pandas.pydata.org/pandas-docs/stable/reference/api/) for
information on how to do this. For convenience, we've given a few simple
examples below:

```python
df = reader.df('result')
m_df = reader.df('metadata')

# Filter by experiments have step_size less than 1.0
exp_ids = set(m_df[m_df['step_size'] < 1.0]['exp_id].tolist())
print(df[df['exp_id'].isin(exp_ids)]) # The filtered DataFrame

# Finding which experiment has the lowest final_opt
exp_id = df[df['final_opt'] == min(df['final_opt'].tolist())]['exp_id'].tolist()[0]
print(m_df[m_df['exp_id'] == exp_id]) # Metadata of the best experiment
```

## Walkthrough 2: Using `cox` with `tensorboardX`
__Note__: As with the first walkthrough, a working example file with all of
these commands can be found [here](examples/tb_example.py)

Here, we'll show how to use `cox` and `tensorboardX` in unison for logging.
We'll use the following simple running example:
```python
from cox.store import Store

for slope in range(5):
    s = Store(OUT_DIR) # Create OUT_DIR/RANDOM_UUID
    s.add_table('line_graphs', {'mx': int, 'mx^2': int})
    s.add_table('metadata', {'slope': int})
    s['metadata'].append_row({'slope': slope})

    # GOAL: plot and log the lines "y=slope*x" and "y=slope*x^2"
```

As previously mentioned, `cox.Store` objects also automatically creates a
`tensorboard` folder that is written to via the
[tensorboardX](https://tensorboardx.readthedocs.io/en/latest/tensorboard.html)
library. A created `cox.store.Store` object will actually a `writer` property
that is a fully functioning
[SummaryWriter](https://tensorboardx.readthedocs.io/en/latest/tensorboard.html#tensorboardX.SummaryWriter)
object. That means we can plot the lines we want in TensorBoard as follows:

```python
for x in range(10):
    s.writer.add_scalar('line', slope*x, x)
    s.writer.add_scalar('parabola', slope*(x**2), x)
```

Unfortunately, TensorBoard data is quite hard to read/manipulate through means
other than the TensorBoard interface. For convenience, the `store` object also
provides the ability to write to a table and the `tensorboardX` writer at the same
time through the `log_table_and_tb` function, meaning that we can replace the
above with:

```python
# Does the same thing as the example above but also stores the results in a
# readable 'line_graphs' table 
for x in range(10):
    s.log_table_and_tb('line_graphs', {'mx': slope*x, 'mx^2': slope*(x**2)})
    s['line_graphs'].flush_row()
```

### Viewing multiple tensorboards with `cox.tensorboard_view`
**Note: the `python -m cox.tensorboard_view` command can be called as
`cox-tensorboard` from the command line**

Continuing with our running example, we may now want to visually compare
TensorBoards across multiple parameter settings. Fortunately, `cox`
provides utilities for comparing TensorBoards across experiments in a readable
way.  In our example, where we made a `Store` object and a table
called `metadata` where we stored hyperparameters. We also showed how to
integrate TensorBoard logging via `tensorboardX`. We'll now use the
`cox.tensorboard-view` utility to view the tensorboards from multiple jobs at
once (this is useful when comparing parameters for a grid search).

The way to achieve this is through the `cox.tensorboard_view` command, which is
called as `python3 -m cox.tensorboard_view` with the following arguments:

- `--logdir`: **(required)**, the directory where all of the stores are located
- `--port`: **(default 6006)**, the port on which to run the tensorboard server
- `--metadata-table` **(default "metadata")**, the name of the table where the
  hyperparameters are saved (i.e. "metadata" in our running example). This
should be a table with a single row, as in our running example.
- `--filter-param` **(optional)** Can be used more than once, filters out stores
  from the tensorboard aggregation. For each argument of the form
`--filter-param PARAM_NAME PARAM_REGEX`, only the stores where `PARAM_NAME` in
the metadata matches `PARAM_REGEX` will be kept.
- `--format-str` **(required)** How to display the name of the stores. Recall
  that each store has a `uuid`-generated name by default. This argument
determines how their names will be displayed in the TensorBoard. Curly braces
represent parameter values, and the uuid will always be appended to the name. So
in our running example, `--format-str ss-{step_size}` will result in a
TensorBoard with names of the form `ss-1.0-ed892c4f-069f-4a6d-9775-be8fdfce4713`.

So in our running example, if we run the following command, displaying the slope
in the TensorBoard names and filtering for slopes between 1 and 3:
```bash
python3 -m cox.tensorboard_view --logdir OUT_DIR --format-str slope-{slope} \
    --filter-param slope [1-3] --metadata-table metadata
```
or 
```bash
cox-tensorboard --logdir OUT_DIR --format-str slope-{slope} \
    --filter-param slope [1-3] --metadata-table metadata
```
then navigating to `localhost:6006` yields:

![TensorBoard view](docs/_static/tensorboard.png)




%prep
%autosetup -n cox-0.1.post3

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-cox -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.post3-1
- Package Spec generated