From d6e0bbc49c5650da55329cf00a803b53556862d1 Mon Sep 17 00:00:00 2001 From: CoprDistGit Date: Mon, 15 May 2023 08:50:06 +0000 Subject: automatic import of python-craft-text-detector --- .gitignore | 1 + python-craft-text-detector.spec | 404 ++++++++++++++++++++++++++++++++++++++++ sources | 1 + 3 files changed, 406 insertions(+) create mode 100644 python-craft-text-detector.spec create mode 100644 sources diff --git a/.gitignore b/.gitignore index e69de29..5b210c4 100644 --- a/.gitignore +++ b/.gitignore @@ -0,0 +1 @@ +/craft-text-detector-0.4.3.tar.gz diff --git a/python-craft-text-detector.spec b/python-craft-text-detector.spec new file mode 100644 index 0000000..986cb4a --- /dev/null +++ b/python-craft-text-detector.spec @@ -0,0 +1,404 @@ +%global _empty_manifest_terminate_build 0 +Name: python-craft-text-detector +Version: 0.4.3 +Release: 1 +Summary: Fast and accurate text detection library built on CRAFT implementation +License: MIT +URL: https://github.com/fcakyon/craft_text_detector +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/7d/60/474d6ebd09c6db746a49af2dee0ac48547c6df35c3eee48056193677c794/craft-text-detector-0.4.3.tar.gz +BuildArch: noarch + +Requires: python3-torch +Requires: python3-torchvision +Requires: python3-opencv-python +Requires: python3-scipy +Requires: python3-gdown + +%description +# CRAFT: Character-Region Awareness For Text detection + +

+downloads +downloads +fcakyon twitter +
+
Build status +PyPI version +License: MIT +

+ +Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector | [Paper](https://arxiv.org/abs/1904.01941) | + +## Overview + +PyTorch implementation for CRAFT text detector that effectively detect text area by exploring each character region and affinity between characters. The bounding box of texts are obtained by simply finding minimum bounding rectangles on binary map after thresholding character region and affinity scores. + +teaser + +## Getting started + +### Installation + +- Install using pip: + +```console +pip install craft-text-detector +``` + +### Basic Usage + +```python +# import Craft class +from craft_text_detector import Craft + +# set image path and export folder directory +image = 'figures/idcard.png' # can be filepath, PIL image or numpy array +output_dir = 'outputs/' + +# create a craft instance +craft = Craft(output_dir=output_dir, crop_type="poly", cuda=False) + +# apply craft text detection and export detected regions to output directory +prediction_result = craft.detect_text(image) + +# unload models from ram/gpu +craft.unload_craftnet_model() +craft.unload_refinenet_model() +``` + +### Advanced Usage + +```python +# import craft functions +from craft_text_detector import ( + read_image, + load_craftnet_model, + load_refinenet_model, + get_prediction, + export_detected_regions, + export_extra_results, + empty_cuda_cache +) + +# set image path and export folder directory +image = 'figures/idcard.png' # can be filepath, PIL image or numpy array +output_dir = 'outputs/' + +# read image +image = read_image(image) + +# load models +refine_net = load_refinenet_model(cuda=True) +craft_net = load_craftnet_model(cuda=True) + +# perform prediction +prediction_result = get_prediction( + image=image, + craft_net=craft_net, + refine_net=refine_net, + text_threshold=0.7, + link_threshold=0.4, + low_text=0.4, + cuda=True, + long_size=1280 +) + +# export detected text regions +exported_file_paths = export_detected_regions( + image=image, + regions=prediction_result["boxes"], + output_dir=output_dir, + rectify=True +) + +# export heatmap, detection points, box visualization +export_extra_results( + image=image, + regions=prediction_result["boxes"], + heatmaps=prediction_result["heatmaps"], + output_dir=output_dir +) + +# unload models from gpu +empty_cuda_cache() +``` + + + + +%package -n python3-craft-text-detector +Summary: Fast and accurate text detection library built on CRAFT implementation +Provides: python-craft-text-detector +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-craft-text-detector +# CRAFT: Character-Region Awareness For Text detection + +

+downloads +downloads +fcakyon twitter +
+
Build status +PyPI version +License: MIT +

+ +Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector | [Paper](https://arxiv.org/abs/1904.01941) | + +## Overview + +PyTorch implementation for CRAFT text detector that effectively detect text area by exploring each character region and affinity between characters. The bounding box of texts are obtained by simply finding minimum bounding rectangles on binary map after thresholding character region and affinity scores. + +teaser + +## Getting started + +### Installation + +- Install using pip: + +```console +pip install craft-text-detector +``` + +### Basic Usage + +```python +# import Craft class +from craft_text_detector import Craft + +# set image path and export folder directory +image = 'figures/idcard.png' # can be filepath, PIL image or numpy array +output_dir = 'outputs/' + +# create a craft instance +craft = Craft(output_dir=output_dir, crop_type="poly", cuda=False) + +# apply craft text detection and export detected regions to output directory +prediction_result = craft.detect_text(image) + +# unload models from ram/gpu +craft.unload_craftnet_model() +craft.unload_refinenet_model() +``` + +### Advanced Usage + +```python +# import craft functions +from craft_text_detector import ( + read_image, + load_craftnet_model, + load_refinenet_model, + get_prediction, + export_detected_regions, + export_extra_results, + empty_cuda_cache +) + +# set image path and export folder directory +image = 'figures/idcard.png' # can be filepath, PIL image or numpy array +output_dir = 'outputs/' + +# read image +image = read_image(image) + +# load models +refine_net = load_refinenet_model(cuda=True) +craft_net = load_craftnet_model(cuda=True) + +# perform prediction +prediction_result = get_prediction( + image=image, + craft_net=craft_net, + refine_net=refine_net, + text_threshold=0.7, + link_threshold=0.4, + low_text=0.4, + cuda=True, + long_size=1280 +) + +# export detected text regions +exported_file_paths = export_detected_regions( + image=image, + regions=prediction_result["boxes"], + output_dir=output_dir, + rectify=True +) + +# export heatmap, detection points, box visualization +export_extra_results( + image=image, + regions=prediction_result["boxes"], + heatmaps=prediction_result["heatmaps"], + output_dir=output_dir +) + +# unload models from gpu +empty_cuda_cache() +``` + + + + +%package help +Summary: Development documents and examples for craft-text-detector +Provides: python3-craft-text-detector-doc +%description help +# CRAFT: Character-Region Awareness For Text detection + +

+downloads +downloads +fcakyon twitter +
+
Build status +PyPI version +License: MIT +

+ +Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector | [Paper](https://arxiv.org/abs/1904.01941) | + +## Overview + +PyTorch implementation for CRAFT text detector that effectively detect text area by exploring each character region and affinity between characters. The bounding box of texts are obtained by simply finding minimum bounding rectangles on binary map after thresholding character region and affinity scores. + +teaser + +## Getting started + +### Installation + +- Install using pip: + +```console +pip install craft-text-detector +``` + +### Basic Usage + +```python +# import Craft class +from craft_text_detector import Craft + +# set image path and export folder directory +image = 'figures/idcard.png' # can be filepath, PIL image or numpy array +output_dir = 'outputs/' + +# create a craft instance +craft = Craft(output_dir=output_dir, crop_type="poly", cuda=False) + +# apply craft text detection and export detected regions to output directory +prediction_result = craft.detect_text(image) + +# unload models from ram/gpu +craft.unload_craftnet_model() +craft.unload_refinenet_model() +``` + +### Advanced Usage + +```python +# import craft functions +from craft_text_detector import ( + read_image, + load_craftnet_model, + load_refinenet_model, + get_prediction, + export_detected_regions, + export_extra_results, + empty_cuda_cache +) + +# set image path and export folder directory +image = 'figures/idcard.png' # can be filepath, PIL image or numpy array +output_dir = 'outputs/' + +# read image +image = read_image(image) + +# load models +refine_net = load_refinenet_model(cuda=True) +craft_net = load_craftnet_model(cuda=True) + +# perform prediction +prediction_result = get_prediction( + image=image, + craft_net=craft_net, + refine_net=refine_net, + text_threshold=0.7, + link_threshold=0.4, + low_text=0.4, + cuda=True, + long_size=1280 +) + +# export detected text regions +exported_file_paths = export_detected_regions( + image=image, + regions=prediction_result["boxes"], + output_dir=output_dir, + rectify=True +) + +# export heatmap, detection points, box visualization +export_extra_results( + image=image, + regions=prediction_result["boxes"], + heatmaps=prediction_result["heatmaps"], + output_dir=output_dir +) + +# unload models from gpu +empty_cuda_cache() +``` + + + + +%prep +%autosetup -n craft-text-detector-0.4.3 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-craft-text-detector -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Mon May 15 2023 Python_Bot - 0.4.3-1 +- Package Spec generated diff --git a/sources b/sources new file mode 100644 index 0000000..2b4a1f0 --- /dev/null +++ b/sources @@ -0,0 +1 @@ +5cc2e339be1ece2b8bcf550cf75fcabc craft-text-detector-0.4.3.tar.gz -- cgit v1.2.3