summaryrefslogtreecommitdiff
path: root/python-craft-text-detector.spec
blob: 986cb4af5ef0cc9a3215f985a848bcf1b42ed8da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
%global _empty_manifest_terminate_build 0
Name:		python-craft-text-detector
Version:	0.4.3
Release:	1
Summary:	Fast and accurate text detection library built on CRAFT implementation
License:	MIT
URL:		https://github.com/fcakyon/craft_text_detector
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/7d/60/474d6ebd09c6db746a49af2dee0ac48547c6df35c3eee48056193677c794/craft-text-detector-0.4.3.tar.gz
BuildArch:	noarch

Requires:	python3-torch
Requires:	python3-torchvision
Requires:	python3-opencv-python
Requires:	python3-scipy
Requires:	python3-gdown

%description
# CRAFT: Character-Region Awareness For Text detection

<p align="center">
<a href="https://pepy.tech/project/craft-text-detector"><img src="https://pepy.tech/badge/craft-text-detector" alt="downloads"></a>
<a href="https://pypi.org/project/craft-text-detector"><img src="https://img.shields.io/pypi/pyversions/craft-text-detector" alt="downloads"></a>
<a href="https://twitter.com/fcakyon"><img src="https://img.shields.io/twitter/follow/fcakyon?color=blue&logo=twitter&style=flat" alt="fcakyon twitter">
<br>
<a href="https://github.com/fcakyon/craft-text-detector/actions"><img alt="Build status" src="https://github.com/fcakyon/craft-text-detector/actions/workflows/ci.yml/badge.svg"></a>
<a href="https://badge.fury.io/py/craft-text-detector"><img src="https://badge.fury.io/py/craft-text-detector.svg" alt="PyPI version" height="20"></a>
<a href="https://github.com/fcakyon/craft-text-detector/blob/main/LICENSE"><img alt="License: MIT" src="https://img.shields.io/pypi/l/craft-text-detector"></a>
</p>

Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector | [Paper](https://arxiv.org/abs/1904.01941) |

## Overview

PyTorch implementation for CRAFT text detector that effectively detect text area by exploring each character region and affinity between characters. The bounding box of texts are obtained by simply finding minimum bounding rectangles on binary map after thresholding character region and affinity scores.

<img width="1000" alt="teaser" src="./figures/craft_example.gif">

## Getting started

### Installation

- Install using pip:

```console
pip install craft-text-detector
```

### Basic Usage

```python
# import Craft class
from craft_text_detector import Craft

# set image path and export folder directory
image = 'figures/idcard.png' # can be filepath, PIL image or numpy array
output_dir = 'outputs/'

# create a craft instance
craft = Craft(output_dir=output_dir, crop_type="poly", cuda=False)

# apply craft text detection and export detected regions to output directory
prediction_result = craft.detect_text(image)

# unload models from ram/gpu
craft.unload_craftnet_model()
craft.unload_refinenet_model()
```

### Advanced Usage

```python
# import craft functions
from craft_text_detector import (
    read_image,
    load_craftnet_model,
    load_refinenet_model,
    get_prediction,
    export_detected_regions,
    export_extra_results,
    empty_cuda_cache
)

# set image path and export folder directory
image = 'figures/idcard.png' # can be filepath, PIL image or numpy array
output_dir = 'outputs/'

# read image
image = read_image(image)

# load models
refine_net = load_refinenet_model(cuda=True)
craft_net = load_craftnet_model(cuda=True)

# perform prediction
prediction_result = get_prediction(
    image=image,
    craft_net=craft_net,
    refine_net=refine_net,
    text_threshold=0.7,
    link_threshold=0.4,
    low_text=0.4,
    cuda=True,
    long_size=1280
)

# export detected text regions
exported_file_paths = export_detected_regions(
    image=image,
    regions=prediction_result["boxes"],
    output_dir=output_dir,
    rectify=True
)

# export heatmap, detection points, box visualization
export_extra_results(
    image=image,
    regions=prediction_result["boxes"],
    heatmaps=prediction_result["heatmaps"],
    output_dir=output_dir
)

# unload models from gpu
empty_cuda_cache()
```




%package -n python3-craft-text-detector
Summary:	Fast and accurate text detection library built on CRAFT implementation
Provides:	python-craft-text-detector
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-craft-text-detector
# CRAFT: Character-Region Awareness For Text detection

<p align="center">
<a href="https://pepy.tech/project/craft-text-detector"><img src="https://pepy.tech/badge/craft-text-detector" alt="downloads"></a>
<a href="https://pypi.org/project/craft-text-detector"><img src="https://img.shields.io/pypi/pyversions/craft-text-detector" alt="downloads"></a>
<a href="https://twitter.com/fcakyon"><img src="https://img.shields.io/twitter/follow/fcakyon?color=blue&logo=twitter&style=flat" alt="fcakyon twitter">
<br>
<a href="https://github.com/fcakyon/craft-text-detector/actions"><img alt="Build status" src="https://github.com/fcakyon/craft-text-detector/actions/workflows/ci.yml/badge.svg"></a>
<a href="https://badge.fury.io/py/craft-text-detector"><img src="https://badge.fury.io/py/craft-text-detector.svg" alt="PyPI version" height="20"></a>
<a href="https://github.com/fcakyon/craft-text-detector/blob/main/LICENSE"><img alt="License: MIT" src="https://img.shields.io/pypi/l/craft-text-detector"></a>
</p>

Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector | [Paper](https://arxiv.org/abs/1904.01941) |

## Overview

PyTorch implementation for CRAFT text detector that effectively detect text area by exploring each character region and affinity between characters. The bounding box of texts are obtained by simply finding minimum bounding rectangles on binary map after thresholding character region and affinity scores.

<img width="1000" alt="teaser" src="./figures/craft_example.gif">

## Getting started

### Installation

- Install using pip:

```console
pip install craft-text-detector
```

### Basic Usage

```python
# import Craft class
from craft_text_detector import Craft

# set image path and export folder directory
image = 'figures/idcard.png' # can be filepath, PIL image or numpy array
output_dir = 'outputs/'

# create a craft instance
craft = Craft(output_dir=output_dir, crop_type="poly", cuda=False)

# apply craft text detection and export detected regions to output directory
prediction_result = craft.detect_text(image)

# unload models from ram/gpu
craft.unload_craftnet_model()
craft.unload_refinenet_model()
```

### Advanced Usage

```python
# import craft functions
from craft_text_detector import (
    read_image,
    load_craftnet_model,
    load_refinenet_model,
    get_prediction,
    export_detected_regions,
    export_extra_results,
    empty_cuda_cache
)

# set image path and export folder directory
image = 'figures/idcard.png' # can be filepath, PIL image or numpy array
output_dir = 'outputs/'

# read image
image = read_image(image)

# load models
refine_net = load_refinenet_model(cuda=True)
craft_net = load_craftnet_model(cuda=True)

# perform prediction
prediction_result = get_prediction(
    image=image,
    craft_net=craft_net,
    refine_net=refine_net,
    text_threshold=0.7,
    link_threshold=0.4,
    low_text=0.4,
    cuda=True,
    long_size=1280
)

# export detected text regions
exported_file_paths = export_detected_regions(
    image=image,
    regions=prediction_result["boxes"],
    output_dir=output_dir,
    rectify=True
)

# export heatmap, detection points, box visualization
export_extra_results(
    image=image,
    regions=prediction_result["boxes"],
    heatmaps=prediction_result["heatmaps"],
    output_dir=output_dir
)

# unload models from gpu
empty_cuda_cache()
```




%package help
Summary:	Development documents and examples for craft-text-detector
Provides:	python3-craft-text-detector-doc
%description help
# CRAFT: Character-Region Awareness For Text detection

<p align="center">
<a href="https://pepy.tech/project/craft-text-detector"><img src="https://pepy.tech/badge/craft-text-detector" alt="downloads"></a>
<a href="https://pypi.org/project/craft-text-detector"><img src="https://img.shields.io/pypi/pyversions/craft-text-detector" alt="downloads"></a>
<a href="https://twitter.com/fcakyon"><img src="https://img.shields.io/twitter/follow/fcakyon?color=blue&logo=twitter&style=flat" alt="fcakyon twitter">
<br>
<a href="https://github.com/fcakyon/craft-text-detector/actions"><img alt="Build status" src="https://github.com/fcakyon/craft-text-detector/actions/workflows/ci.yml/badge.svg"></a>
<a href="https://badge.fury.io/py/craft-text-detector"><img src="https://badge.fury.io/py/craft-text-detector.svg" alt="PyPI version" height="20"></a>
<a href="https://github.com/fcakyon/craft-text-detector/blob/main/LICENSE"><img alt="License: MIT" src="https://img.shields.io/pypi/l/craft-text-detector"></a>
</p>

Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector | [Paper](https://arxiv.org/abs/1904.01941) |

## Overview

PyTorch implementation for CRAFT text detector that effectively detect text area by exploring each character region and affinity between characters. The bounding box of texts are obtained by simply finding minimum bounding rectangles on binary map after thresholding character region and affinity scores.

<img width="1000" alt="teaser" src="./figures/craft_example.gif">

## Getting started

### Installation

- Install using pip:

```console
pip install craft-text-detector
```

### Basic Usage

```python
# import Craft class
from craft_text_detector import Craft

# set image path and export folder directory
image = 'figures/idcard.png' # can be filepath, PIL image or numpy array
output_dir = 'outputs/'

# create a craft instance
craft = Craft(output_dir=output_dir, crop_type="poly", cuda=False)

# apply craft text detection and export detected regions to output directory
prediction_result = craft.detect_text(image)

# unload models from ram/gpu
craft.unload_craftnet_model()
craft.unload_refinenet_model()
```

### Advanced Usage

```python
# import craft functions
from craft_text_detector import (
    read_image,
    load_craftnet_model,
    load_refinenet_model,
    get_prediction,
    export_detected_regions,
    export_extra_results,
    empty_cuda_cache
)

# set image path and export folder directory
image = 'figures/idcard.png' # can be filepath, PIL image or numpy array
output_dir = 'outputs/'

# read image
image = read_image(image)

# load models
refine_net = load_refinenet_model(cuda=True)
craft_net = load_craftnet_model(cuda=True)

# perform prediction
prediction_result = get_prediction(
    image=image,
    craft_net=craft_net,
    refine_net=refine_net,
    text_threshold=0.7,
    link_threshold=0.4,
    low_text=0.4,
    cuda=True,
    long_size=1280
)

# export detected text regions
exported_file_paths = export_detected_regions(
    image=image,
    regions=prediction_result["boxes"],
    output_dir=output_dir,
    rectify=True
)

# export heatmap, detection points, box visualization
export_extra_results(
    image=image,
    regions=prediction_result["boxes"],
    heatmaps=prediction_result["heatmaps"],
    output_dir=output_dir
)

# unload models from gpu
empty_cuda_cache()
```




%prep
%autosetup -n craft-text-detector-0.4.3

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-craft-text-detector -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Mon May 15 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.3-1
- Package Spec generated