summaryrefslogtreecommitdiff
path: root/python-csaps.spec
blob: a951cfaf19bea54d5ed7b7504489b9bcb1e5383f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
%global _empty_manifest_terminate_build 0
Name:		python-csaps
Version:	1.1.0
Release:	1
Summary:	Cubic spline approximation (smoothing)
License:	MIT
URL:		https://github.com/espdev/csaps
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/f3/de/ef40ae9b0485b36c0128d0d0065e065d7dc8fa3c2334a886548dc70e8ad7/csaps-1.1.0.tar.gz
BuildArch:	noarch

Requires:	python3-numpy
Requires:	python3-scipy
Requires:	python3-sphinx
Requires:	python3-matplotlib
Requires:	python3-numpydoc
Requires:	python3-m2r2
Requires:	python3-pytest
Requires:	python3-coverage
Requires:	python3-pytest-cov
Requires:	python3-coveralls

%description
<p align="center">
  <a href="https://github.com/espdev/csaps"><img src="https://user-images.githubusercontent.com/1299189/76571441-8d97e400-64c8-11ea-8c05-58850f8311a1.png" alt="csaps" width="400" /></a><br>
</p>

<p align="center">
  <a href="https://pypi.python.org/pypi/csaps"><img src="https://img.shields.io/pypi/v/csaps.svg" alt="PyPI version" /></a>
  <a href="https://pypi.python.org/pypi/csaps"><img src="https://img.shields.io/pypi/pyversions/csaps.svg" alt="Supported Python versions" /></a>
  <a href="https://github.com/espdev/csaps"><img src="https://github.com/espdev/csaps/workflows/main/badge.svg" alt="GitHub Actions (Tests)" /></a>
  <a href="https://csaps.readthedocs.io/en/latest/?badge=latest"><img src="https://readthedocs.org/projects/csaps/badge/?version=latest" alt="Documentation Status" /></a>
  <a href="https://coveralls.io/github/espdev/csaps?branch=master"><img src="https://coveralls.io/repos/github/espdev/csaps/badge.svg?branch=master" alt="Coverage Status" /></a>
  <a href="https://choosealicense.com/licenses/mit/"><img src="https://img.shields.io/pypi/l/csaps.svg" alt="License" /></a>
</p>

**csaps** is a Python package for univariate, multivariate and n-dimensional grid data approximation using cubic smoothing splines.
The package can be useful in practical engineering tasks for data approximation and smoothing.

## Installing

Use pip for installing:

```
pip install -U csaps
```

The module depends only on NumPy and SciPy. Python 3.6 or above is supported.

## Simple Examples

Here is a couple of examples of smoothing data.

An univariate data smoothing:

```python
import numpy as np
import matplotlib.pyplot as plt

from csaps import csaps

np.random.seed(1234)

x = np.linspace(-5., 5., 25)
y = np.exp(-(x/2.5)**2) + (np.random.rand(25) - 0.2) * 0.3
xs = np.linspace(x[0], x[-1], 150)

ys = csaps(x, y, xs, smooth=0.85)

plt.plot(x, y, 'o', xs, ys, '-')
plt.show()
```

<p align="center">
  <img src="https://user-images.githubusercontent.com/1299189/72231304-cd774380-35cb-11ea-821d-d5662cc1eedf.png" alt="univariate" />
<p/>

A surface data smoothing:

```python
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

from csaps import csaps

np.random.seed(1234)
xdata = [np.linspace(-3, 3, 41), np.linspace(-3.5, 3.5, 31)]
i, j = np.meshgrid(*xdata, indexing='ij')
ydata = (3 * (1 - j)**2. * np.exp(-(j**2) - (i + 1)**2)
         - 10 * (j / 5 - j**3 - i**5) * np.exp(-j**2 - i**2)
         - 1 / 3 * np.exp(-(j + 1)**2 - i**2))
ydata = ydata + (np.random.randn(*ydata.shape) * 0.75)

ydata_s = csaps(xdata, ydata, xdata, smooth=0.988)

fig = plt.figure(figsize=(7, 4.5))
ax = fig.add_subplot(111, projection='3d')
ax.set_facecolor('none')
c = [s['color'] for s in plt.rcParams['axes.prop_cycle']]
ax.plot_wireframe(j, i, ydata, linewidths=0.5, color=c[0], alpha=0.5)
ax.scatter(j, i, ydata, s=10, c=c[0], alpha=0.5)
ax.plot_surface(j, i, ydata_s, color=c[1], linewidth=0, alpha=1.0)
ax.view_init(elev=9., azim=290)

plt.show()
```

<p align="center">
  <img src="https://user-images.githubusercontent.com/1299189/72231252-7a9d8c00-35cb-11ea-8890-487b8a7dbd1d.png" alt="surface" />
<p/>

## Documentation

More examples of usage and the full documentation can be found at https://csaps.readthedocs.io.

## Testing

We use pytest for testing.

```
cd /path/to/csaps/project/directory
pip install -e .[tests]
pytest
```

## Algorithm and Implementation

**csaps** Python package is inspired by MATLAB [CSAPS](https://www.mathworks.com/help/curvefit/csaps.html) function that is an implementation of 
Fortran routine SMOOTH from [PGS](http://pages.cs.wisc.edu/~deboor/pgs/) (originally written by Carl de Boor).

Also the algothithm implementation in other languages:

* [csaps-rs](https://github.com/espdev/csaps-rs) Rust ndarray/sprs based implementation
* [csaps-cpp](https://github.com/espdev/csaps-cpp) C++11 Eigen based implementation (incomplete)


## References

C. de Boor, A Practical Guide to Splines, Springer-Verlag, 1978.

## License

[MIT](https://choosealicense.com/licenses/mit/)

# Changelog

## v1.1.0

* Introduced optional `normalizedsmooth` argument to reduce dependence on xdata and weights [#47](https://github.com/espdev/csaps/pull/47)
* Update numpy and scipy dependency ranges

## v1.0.4 (04.05.2021)

* Bump numpy dependency version

## v1.0.3 (01.01.2021)

* Bump scipy dependency version
* Bump sphinx dependency version and use m2r2 sphinx extension instead of m2r
* Add Python 3.9 to classifiers list and to Travis CI
* Set development status classifier to "5 - Production/Stable"
* Happy New Year!

## v1.0.2 (19.07.2020)

* Fix using 'nu' argument when n-d grid spline evaluating [#32](https://github.com/espdev/csaps/pull/32)

## v1.0.1 (19.07.2020)

* Fix n-d grid spline evaluating performance regression [#31](https://github.com/espdev/csaps/pull/31)

## v1.0.0 (11.07.2020)

* Use `PPoly` and `NdPPoly` base classes from SciPy interpolate module for `SplinePPForm` and `NdGridSplinePPForm` respectively.
* Remove deprecated classes `UnivariateCubicSmoothingSpline` and `MultivariateCubicSmoothingSpline`
* Update the documentation

**Notes**

In this release the spline representation (the array of spline coefficients) has been changed 
according to `PPoly`/`NdPPoly`. 
See SciPy [PPoly](https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PPoly.html) 
and [NdPPoly](https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.NdPPoly.html) documentation for details.


## v0.11.0 (28.03.2020)

* Internal re-design `SplinePPForm` and `NdGridSplinePPForm` classes [#17](https://github.com/espdev/csaps/issues/17):
    - Remove `shape` and `axis` properties and reshaping data in these classes
    - `NdGridSplinePPForm` coefficients array for 1D grid now is 1-d instead of 2-d
* Refactoring the code and decrease memory consumption
* Add `overload` type-hints for `csaps` function signatures

## v0.10.1 (19.03.2020)

* Fix call of `numpy.pad` function for numpy <1.17 [#15](https://github.com/espdev/csaps/issues/15)

## v0.10.0 (18.02.2020)

* Significant performance improvements for make/evaluate splines and memory consumption optimization
* Change format for storing spline coefficients (reshape coeffs array) to improve performance
* Add shape property to `SplinePPForm`/`NdGridSplinePPForm` and axis property to `SplinePPForm`
* Fix issues with the smoothing factor in nd-grid case: inverted ordering and unnable to use 0.0 value
* Update documentation

## v0.9.0 (21.01.2020)

* Drop support of Python 3.5
* `weights`, `smooth` and `axis` arguments in `csaps` function are keyword-only now
* `UnivariateCubicSmoothingSpline` and `MultivariateCubicSmoothingSpline` classes are deprecated 
  and will be removed in 1.0.0 version. Use `CubicSmoothingSpline` instead.

## v0.8.0 (13.01.2020)

* Add `csaps` function that can be used as the main API
* Refactor the internal structure of the package
* Add the [documentation](https://csaps.readthedocs.io)

**Attention**

This is the last version that supports Python 3.5. 
The next versions will support Python 3.6 or above.

## v0.7.0 (19.09.2019)

* Add Generic-based type-hints and mypy-compatibility

## v0.6.1 (13.09.2019)

* A slight refactoring and extra data copies removing

## v0.6.0 (12.09.2019)

* Add "axis" parameter for univariate/multivariate cases

## v0.5.0 (10.06.2019)

* Reorganize the project to package-based structure
* Add the interface class for all smoothing spline classes

## v0.4.2 (07.09.2019)

* FIX: "smooth" value is 0.0 was not used

## v0.4.1 (30.05.2019)

* First PyPI release




%package -n python3-csaps
Summary:	Cubic spline approximation (smoothing)
Provides:	python-csaps
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-csaps
<p align="center">
  <a href="https://github.com/espdev/csaps"><img src="https://user-images.githubusercontent.com/1299189/76571441-8d97e400-64c8-11ea-8c05-58850f8311a1.png" alt="csaps" width="400" /></a><br>
</p>

<p align="center">
  <a href="https://pypi.python.org/pypi/csaps"><img src="https://img.shields.io/pypi/v/csaps.svg" alt="PyPI version" /></a>
  <a href="https://pypi.python.org/pypi/csaps"><img src="https://img.shields.io/pypi/pyversions/csaps.svg" alt="Supported Python versions" /></a>
  <a href="https://github.com/espdev/csaps"><img src="https://github.com/espdev/csaps/workflows/main/badge.svg" alt="GitHub Actions (Tests)" /></a>
  <a href="https://csaps.readthedocs.io/en/latest/?badge=latest"><img src="https://readthedocs.org/projects/csaps/badge/?version=latest" alt="Documentation Status" /></a>
  <a href="https://coveralls.io/github/espdev/csaps?branch=master"><img src="https://coveralls.io/repos/github/espdev/csaps/badge.svg?branch=master" alt="Coverage Status" /></a>
  <a href="https://choosealicense.com/licenses/mit/"><img src="https://img.shields.io/pypi/l/csaps.svg" alt="License" /></a>
</p>

**csaps** is a Python package for univariate, multivariate and n-dimensional grid data approximation using cubic smoothing splines.
The package can be useful in practical engineering tasks for data approximation and smoothing.

## Installing

Use pip for installing:

```
pip install -U csaps
```

The module depends only on NumPy and SciPy. Python 3.6 or above is supported.

## Simple Examples

Here is a couple of examples of smoothing data.

An univariate data smoothing:

```python
import numpy as np
import matplotlib.pyplot as plt

from csaps import csaps

np.random.seed(1234)

x = np.linspace(-5., 5., 25)
y = np.exp(-(x/2.5)**2) + (np.random.rand(25) - 0.2) * 0.3
xs = np.linspace(x[0], x[-1], 150)

ys = csaps(x, y, xs, smooth=0.85)

plt.plot(x, y, 'o', xs, ys, '-')
plt.show()
```

<p align="center">
  <img src="https://user-images.githubusercontent.com/1299189/72231304-cd774380-35cb-11ea-821d-d5662cc1eedf.png" alt="univariate" />
<p/>

A surface data smoothing:

```python
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

from csaps import csaps

np.random.seed(1234)
xdata = [np.linspace(-3, 3, 41), np.linspace(-3.5, 3.5, 31)]
i, j = np.meshgrid(*xdata, indexing='ij')
ydata = (3 * (1 - j)**2. * np.exp(-(j**2) - (i + 1)**2)
         - 10 * (j / 5 - j**3 - i**5) * np.exp(-j**2 - i**2)
         - 1 / 3 * np.exp(-(j + 1)**2 - i**2))
ydata = ydata + (np.random.randn(*ydata.shape) * 0.75)

ydata_s = csaps(xdata, ydata, xdata, smooth=0.988)

fig = plt.figure(figsize=(7, 4.5))
ax = fig.add_subplot(111, projection='3d')
ax.set_facecolor('none')
c = [s['color'] for s in plt.rcParams['axes.prop_cycle']]
ax.plot_wireframe(j, i, ydata, linewidths=0.5, color=c[0], alpha=0.5)
ax.scatter(j, i, ydata, s=10, c=c[0], alpha=0.5)
ax.plot_surface(j, i, ydata_s, color=c[1], linewidth=0, alpha=1.0)
ax.view_init(elev=9., azim=290)

plt.show()
```

<p align="center">
  <img src="https://user-images.githubusercontent.com/1299189/72231252-7a9d8c00-35cb-11ea-8890-487b8a7dbd1d.png" alt="surface" />
<p/>

## Documentation

More examples of usage and the full documentation can be found at https://csaps.readthedocs.io.

## Testing

We use pytest for testing.

```
cd /path/to/csaps/project/directory
pip install -e .[tests]
pytest
```

## Algorithm and Implementation

**csaps** Python package is inspired by MATLAB [CSAPS](https://www.mathworks.com/help/curvefit/csaps.html) function that is an implementation of 
Fortran routine SMOOTH from [PGS](http://pages.cs.wisc.edu/~deboor/pgs/) (originally written by Carl de Boor).

Also the algothithm implementation in other languages:

* [csaps-rs](https://github.com/espdev/csaps-rs) Rust ndarray/sprs based implementation
* [csaps-cpp](https://github.com/espdev/csaps-cpp) C++11 Eigen based implementation (incomplete)


## References

C. de Boor, A Practical Guide to Splines, Springer-Verlag, 1978.

## License

[MIT](https://choosealicense.com/licenses/mit/)

# Changelog

## v1.1.0

* Introduced optional `normalizedsmooth` argument to reduce dependence on xdata and weights [#47](https://github.com/espdev/csaps/pull/47)
* Update numpy and scipy dependency ranges

## v1.0.4 (04.05.2021)

* Bump numpy dependency version

## v1.0.3 (01.01.2021)

* Bump scipy dependency version
* Bump sphinx dependency version and use m2r2 sphinx extension instead of m2r
* Add Python 3.9 to classifiers list and to Travis CI
* Set development status classifier to "5 - Production/Stable"
* Happy New Year!

## v1.0.2 (19.07.2020)

* Fix using 'nu' argument when n-d grid spline evaluating [#32](https://github.com/espdev/csaps/pull/32)

## v1.0.1 (19.07.2020)

* Fix n-d grid spline evaluating performance regression [#31](https://github.com/espdev/csaps/pull/31)

## v1.0.0 (11.07.2020)

* Use `PPoly` and `NdPPoly` base classes from SciPy interpolate module for `SplinePPForm` and `NdGridSplinePPForm` respectively.
* Remove deprecated classes `UnivariateCubicSmoothingSpline` and `MultivariateCubicSmoothingSpline`
* Update the documentation

**Notes**

In this release the spline representation (the array of spline coefficients) has been changed 
according to `PPoly`/`NdPPoly`. 
See SciPy [PPoly](https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PPoly.html) 
and [NdPPoly](https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.NdPPoly.html) documentation for details.


## v0.11.0 (28.03.2020)

* Internal re-design `SplinePPForm` and `NdGridSplinePPForm` classes [#17](https://github.com/espdev/csaps/issues/17):
    - Remove `shape` and `axis` properties and reshaping data in these classes
    - `NdGridSplinePPForm` coefficients array for 1D grid now is 1-d instead of 2-d
* Refactoring the code and decrease memory consumption
* Add `overload` type-hints for `csaps` function signatures

## v0.10.1 (19.03.2020)

* Fix call of `numpy.pad` function for numpy <1.17 [#15](https://github.com/espdev/csaps/issues/15)

## v0.10.0 (18.02.2020)

* Significant performance improvements for make/evaluate splines and memory consumption optimization
* Change format for storing spline coefficients (reshape coeffs array) to improve performance
* Add shape property to `SplinePPForm`/`NdGridSplinePPForm` and axis property to `SplinePPForm`
* Fix issues with the smoothing factor in nd-grid case: inverted ordering and unnable to use 0.0 value
* Update documentation

## v0.9.0 (21.01.2020)

* Drop support of Python 3.5
* `weights`, `smooth` and `axis` arguments in `csaps` function are keyword-only now
* `UnivariateCubicSmoothingSpline` and `MultivariateCubicSmoothingSpline` classes are deprecated 
  and will be removed in 1.0.0 version. Use `CubicSmoothingSpline` instead.

## v0.8.0 (13.01.2020)

* Add `csaps` function that can be used as the main API
* Refactor the internal structure of the package
* Add the [documentation](https://csaps.readthedocs.io)

**Attention**

This is the last version that supports Python 3.5. 
The next versions will support Python 3.6 or above.

## v0.7.0 (19.09.2019)

* Add Generic-based type-hints and mypy-compatibility

## v0.6.1 (13.09.2019)

* A slight refactoring and extra data copies removing

## v0.6.0 (12.09.2019)

* Add "axis" parameter for univariate/multivariate cases

## v0.5.0 (10.06.2019)

* Reorganize the project to package-based structure
* Add the interface class for all smoothing spline classes

## v0.4.2 (07.09.2019)

* FIX: "smooth" value is 0.0 was not used

## v0.4.1 (30.05.2019)

* First PyPI release




%package help
Summary:	Development documents and examples for csaps
Provides:	python3-csaps-doc
%description help
<p align="center">
  <a href="https://github.com/espdev/csaps"><img src="https://user-images.githubusercontent.com/1299189/76571441-8d97e400-64c8-11ea-8c05-58850f8311a1.png" alt="csaps" width="400" /></a><br>
</p>

<p align="center">
  <a href="https://pypi.python.org/pypi/csaps"><img src="https://img.shields.io/pypi/v/csaps.svg" alt="PyPI version" /></a>
  <a href="https://pypi.python.org/pypi/csaps"><img src="https://img.shields.io/pypi/pyversions/csaps.svg" alt="Supported Python versions" /></a>
  <a href="https://github.com/espdev/csaps"><img src="https://github.com/espdev/csaps/workflows/main/badge.svg" alt="GitHub Actions (Tests)" /></a>
  <a href="https://csaps.readthedocs.io/en/latest/?badge=latest"><img src="https://readthedocs.org/projects/csaps/badge/?version=latest" alt="Documentation Status" /></a>
  <a href="https://coveralls.io/github/espdev/csaps?branch=master"><img src="https://coveralls.io/repos/github/espdev/csaps/badge.svg?branch=master" alt="Coverage Status" /></a>
  <a href="https://choosealicense.com/licenses/mit/"><img src="https://img.shields.io/pypi/l/csaps.svg" alt="License" /></a>
</p>

**csaps** is a Python package for univariate, multivariate and n-dimensional grid data approximation using cubic smoothing splines.
The package can be useful in practical engineering tasks for data approximation and smoothing.

## Installing

Use pip for installing:

```
pip install -U csaps
```

The module depends only on NumPy and SciPy. Python 3.6 or above is supported.

## Simple Examples

Here is a couple of examples of smoothing data.

An univariate data smoothing:

```python
import numpy as np
import matplotlib.pyplot as plt

from csaps import csaps

np.random.seed(1234)

x = np.linspace(-5., 5., 25)
y = np.exp(-(x/2.5)**2) + (np.random.rand(25) - 0.2) * 0.3
xs = np.linspace(x[0], x[-1], 150)

ys = csaps(x, y, xs, smooth=0.85)

plt.plot(x, y, 'o', xs, ys, '-')
plt.show()
```

<p align="center">
  <img src="https://user-images.githubusercontent.com/1299189/72231304-cd774380-35cb-11ea-821d-d5662cc1eedf.png" alt="univariate" />
<p/>

A surface data smoothing:

```python
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

from csaps import csaps

np.random.seed(1234)
xdata = [np.linspace(-3, 3, 41), np.linspace(-3.5, 3.5, 31)]
i, j = np.meshgrid(*xdata, indexing='ij')
ydata = (3 * (1 - j)**2. * np.exp(-(j**2) - (i + 1)**2)
         - 10 * (j / 5 - j**3 - i**5) * np.exp(-j**2 - i**2)
         - 1 / 3 * np.exp(-(j + 1)**2 - i**2))
ydata = ydata + (np.random.randn(*ydata.shape) * 0.75)

ydata_s = csaps(xdata, ydata, xdata, smooth=0.988)

fig = plt.figure(figsize=(7, 4.5))
ax = fig.add_subplot(111, projection='3d')
ax.set_facecolor('none')
c = [s['color'] for s in plt.rcParams['axes.prop_cycle']]
ax.plot_wireframe(j, i, ydata, linewidths=0.5, color=c[0], alpha=0.5)
ax.scatter(j, i, ydata, s=10, c=c[0], alpha=0.5)
ax.plot_surface(j, i, ydata_s, color=c[1], linewidth=0, alpha=1.0)
ax.view_init(elev=9., azim=290)

plt.show()
```

<p align="center">
  <img src="https://user-images.githubusercontent.com/1299189/72231252-7a9d8c00-35cb-11ea-8890-487b8a7dbd1d.png" alt="surface" />
<p/>

## Documentation

More examples of usage and the full documentation can be found at https://csaps.readthedocs.io.

## Testing

We use pytest for testing.

```
cd /path/to/csaps/project/directory
pip install -e .[tests]
pytest
```

## Algorithm and Implementation

**csaps** Python package is inspired by MATLAB [CSAPS](https://www.mathworks.com/help/curvefit/csaps.html) function that is an implementation of 
Fortran routine SMOOTH from [PGS](http://pages.cs.wisc.edu/~deboor/pgs/) (originally written by Carl de Boor).

Also the algothithm implementation in other languages:

* [csaps-rs](https://github.com/espdev/csaps-rs) Rust ndarray/sprs based implementation
* [csaps-cpp](https://github.com/espdev/csaps-cpp) C++11 Eigen based implementation (incomplete)


## References

C. de Boor, A Practical Guide to Splines, Springer-Verlag, 1978.

## License

[MIT](https://choosealicense.com/licenses/mit/)

# Changelog

## v1.1.0

* Introduced optional `normalizedsmooth` argument to reduce dependence on xdata and weights [#47](https://github.com/espdev/csaps/pull/47)
* Update numpy and scipy dependency ranges

## v1.0.4 (04.05.2021)

* Bump numpy dependency version

## v1.0.3 (01.01.2021)

* Bump scipy dependency version
* Bump sphinx dependency version and use m2r2 sphinx extension instead of m2r
* Add Python 3.9 to classifiers list and to Travis CI
* Set development status classifier to "5 - Production/Stable"
* Happy New Year!

## v1.0.2 (19.07.2020)

* Fix using 'nu' argument when n-d grid spline evaluating [#32](https://github.com/espdev/csaps/pull/32)

## v1.0.1 (19.07.2020)

* Fix n-d grid spline evaluating performance regression [#31](https://github.com/espdev/csaps/pull/31)

## v1.0.0 (11.07.2020)

* Use `PPoly` and `NdPPoly` base classes from SciPy interpolate module for `SplinePPForm` and `NdGridSplinePPForm` respectively.
* Remove deprecated classes `UnivariateCubicSmoothingSpline` and `MultivariateCubicSmoothingSpline`
* Update the documentation

**Notes**

In this release the spline representation (the array of spline coefficients) has been changed 
according to `PPoly`/`NdPPoly`. 
See SciPy [PPoly](https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PPoly.html) 
and [NdPPoly](https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.NdPPoly.html) documentation for details.


## v0.11.0 (28.03.2020)

* Internal re-design `SplinePPForm` and `NdGridSplinePPForm` classes [#17](https://github.com/espdev/csaps/issues/17):
    - Remove `shape` and `axis` properties and reshaping data in these classes
    - `NdGridSplinePPForm` coefficients array for 1D grid now is 1-d instead of 2-d
* Refactoring the code and decrease memory consumption
* Add `overload` type-hints for `csaps` function signatures

## v0.10.1 (19.03.2020)

* Fix call of `numpy.pad` function for numpy <1.17 [#15](https://github.com/espdev/csaps/issues/15)

## v0.10.0 (18.02.2020)

* Significant performance improvements for make/evaluate splines and memory consumption optimization
* Change format for storing spline coefficients (reshape coeffs array) to improve performance
* Add shape property to `SplinePPForm`/`NdGridSplinePPForm` and axis property to `SplinePPForm`
* Fix issues with the smoothing factor in nd-grid case: inverted ordering and unnable to use 0.0 value
* Update documentation

## v0.9.0 (21.01.2020)

* Drop support of Python 3.5
* `weights`, `smooth` and `axis` arguments in `csaps` function are keyword-only now
* `UnivariateCubicSmoothingSpline` and `MultivariateCubicSmoothingSpline` classes are deprecated 
  and will be removed in 1.0.0 version. Use `CubicSmoothingSpline` instead.

## v0.8.0 (13.01.2020)

* Add `csaps` function that can be used as the main API
* Refactor the internal structure of the package
* Add the [documentation](https://csaps.readthedocs.io)

**Attention**

This is the last version that supports Python 3.5. 
The next versions will support Python 3.6 or above.

## v0.7.0 (19.09.2019)

* Add Generic-based type-hints and mypy-compatibility

## v0.6.1 (13.09.2019)

* A slight refactoring and extra data copies removing

## v0.6.0 (12.09.2019)

* Add "axis" parameter for univariate/multivariate cases

## v0.5.0 (10.06.2019)

* Reorganize the project to package-based structure
* Add the interface class for all smoothing spline classes

## v0.4.2 (07.09.2019)

* FIX: "smooth" value is 0.0 was not used

## v0.4.1 (30.05.2019)

* First PyPI release




%prep
%autosetup -n csaps-1.1.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-csaps -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.0-1
- Package Spec generated