1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
|
%global _empty_manifest_terminate_build 0
Name: python-cvnn
Version: 2.0
Release: 1
Summary: Library to help implement a complex-valued neural network (cvnn) using tensorflow as back-end
License: MIT
URL: https://github.com/NEGU93/cvnn
Source0: https://mirrors.aliyun.com/pypi/web/packages/c5/e1/e98f4f59843a11ff61a0f98e7c640d1310ae09a2c51d66946470d486f241/cvnn-2.0.tar.gz
BuildArch: noarch
%description
# Complex-Valued Neural Networks (CVNN)
Done by @NEGU93 - J. Agustin Barrachina
[](https://complex-valued-neural-networks.readthedocs.io/en/latest/?badge=latest) [](https://badge.fury.io/py/cvnn) [](https://anaconda.org/negu93/cvnn) [](https://zenodo.org/badge/latestdoi/296050056)
Using this library, the only difference with a Tensorflow code is that you should use `cvnn.layers` module instead of `tf.keras.layers`.
This is a library that uses [Tensorflow](https://www.tensorflow.org) as a back-end to do complex-valued neural networks as CVNNs are barely supported by Tensorflow and not even supported yet for [pytorch](https://github.com/pytorch/pytorch/issues/755) (reason why I decided to use Tensorflow for this library). To the authors knowledge, **this is the first library that actually works with complex data types** instead of real value vectors that are interpreted as real and imaginary part.
Update:
- Since [v1.12](https://pytorch.org/blog/pytorch-1.12-released/#beta-complex32-and-complex-convolutions-in-pytorch) (28 June 2022), Complex32 and Complex Convolutions in PyTorch.
- Since [v0.2](https://github.com/wavefrontshaping/complexPyTorch/releases/tag/0.2) (25 Jan 2021) [complexPyTorch](https://github.com/wavefrontshaping/complexPyTorch) uses complex64 dtype.
- Since [v1.6](https://pytorch.org/blog/pytorch-1.6-released/#beta-complex-numbers) (28 July 2020), pytorch now supports complex vectors and complex gradient as BETA. But still have the same issues that Tensorflow has, so no reason to migrate yet.
## Documentation
Please [Read the Docs](https://complex-valued-neural-networks.readthedocs.io/en/latest/index.html)
## Instalation Guide:
Using [Anaconda](https://anaconda.org/negu93/cvnn)
```
conda install -c negu93 cvnn
```
Using [PIP](https://pypi.org/project/cvnn/)
**Vanilla Version**
installs all the minimum dependencies.
```
pip install cvnn
```
**Plot capabilities**
has the posibility to plot the results obtained with the training with several plot libraries.
```
pip install cvnn[plotter]
```
**Full Version** installs full version with all features
```
pip install cvnn[full]
```
## Short example
From "outside" everything is the same as when using Tensorflow.
``` python
import numpy as np
import tensorflow as tf
# Assume you already have complex data... example numpy arrays of dtype np.complex64
(train_images, train_labels), (test_images, test_labels) = get_dataset() # to be done by each user
model = get_model() # Get your model
# Compile as any TensorFlow model
model.compile(optimizer='adam', metrics=['accuracy'],
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True))
model.summary()
# Train and evaluate
history = model.fit(train_images, train_labels, epochs=epochs, validation_data=(test_images, test_labels))
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
```
The main difference is that you will be using `cvnn` layers instead of Tensorflow layers.
There are some options on how to do it as shown here:
### Sequential API
``` py
import cvnn.layers as complex_layers
def get_model():
model = tf.keras.models.Sequential()
model.add(complex_layers.ComplexInput(input_shape=(32, 32, 3))) # Always use ComplexInput at the start
model.add(complex_layers.ComplexConv2D(32, (3, 3), activation='cart_relu'))
model.add(complex_layers.ComplexAvgPooling2D((2, 2)))
model.add(complex_layers.ComplexConv2D(64, (3, 3), activation='cart_relu'))
model.add(complex_layers.ComplexMaxPooling2D((2, 2)))
model.add(complex_layers.ComplexConv2D(64, (3, 3), activation='cart_relu'))
model.add(complex_layers.ComplexFlatten())
model.add(complex_layers.ComplexDense(64, activation='cart_relu'))
model.add(complex_layers.ComplexDense(10, activation='convert_to_real_with_abs'))
# An activation that casts to real must be used at the last layer.
# The loss function cannot minimize a complex number
return model
```
### Functional API
``` python
import cvnn.layers as complex_layers
def get_model():
inputs = complex_layers.complex_input(shape=(128, 128, 3))
c0 = complex_layers.ComplexConv2D(32, activation='cart_relu', kernel_size=3)(inputs)
c1 = complex_layers.ComplexConv2D(32, activation='cart_relu', kernel_size=3)(c0)
c2 = complex_layers.ComplexMaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='valid')(c1)
t01 = complex_layers.ComplexConv2DTranspose(5, kernel_size=2, strides=(2, 2), activation='cart_relu')(c2)
concat01 = tf.keras.layers.concatenate([t01, c1], axis=-1)
c3 = complex_layers.ComplexConv2D(4, activation='cart_relu', kernel_size=3)(concat01)
out = complex_layers.ComplexConv2D(4, activation='cart_relu', kernel_size=3)(c3)
return tf.keras.Model(inputs, out)
```
## About me & Motivation
[My personal website](https://negu93.github.io/agustinbarrachina/)
I am a PhD student from [Ecole CentraleSupelec](https://www.centralesupelec.fr/)
with a scholarship from [ONERA](https://www.onera.fr/en) and the [DGA](https://www.defense.gouv.fr/dga)
I am basically working with Complex-Valued Neural Networks for my PhD topic.
In the need of making my coding more dynamic I build a library not to have to repeat the same code over and over for little changes and accelerate therefore my coding.
## Cite Me
Alway prefer the [Zenodo](https://zenodo.org/record/4452131/export/hx#.YAkuw-j0mUl) citation.
Next you have a model but beware to change the version and date accordingly.
``` bib
@software{j_agustin_barrachina_2021_4452131,
author = {J Agustin Barrachina},
title = {Complex-Valued Neural Networks (CVNN)},
month = jan,
year = 2021,
publisher = {Zenodo},
version = {v1.0.3},
doi = {10.5281/zenodo.4452131},
url = {https://doi.org/10.5281/zenodo.4452131}
}
```
## Issues
For any issues please report them in [here](https://github.com/NEGU93/cvnn/issues)
This library is tested using [pytest](https://docs.pytest.org/).

%package -n python3-cvnn
Summary: Library to help implement a complex-valued neural network (cvnn) using tensorflow as back-end
Provides: python-cvnn
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-cvnn
# Complex-Valued Neural Networks (CVNN)
Done by @NEGU93 - J. Agustin Barrachina
[](https://complex-valued-neural-networks.readthedocs.io/en/latest/?badge=latest) [](https://badge.fury.io/py/cvnn) [](https://anaconda.org/negu93/cvnn) [](https://zenodo.org/badge/latestdoi/296050056)
Using this library, the only difference with a Tensorflow code is that you should use `cvnn.layers` module instead of `tf.keras.layers`.
This is a library that uses [Tensorflow](https://www.tensorflow.org) as a back-end to do complex-valued neural networks as CVNNs are barely supported by Tensorflow and not even supported yet for [pytorch](https://github.com/pytorch/pytorch/issues/755) (reason why I decided to use Tensorflow for this library). To the authors knowledge, **this is the first library that actually works with complex data types** instead of real value vectors that are interpreted as real and imaginary part.
Update:
- Since [v1.12](https://pytorch.org/blog/pytorch-1.12-released/#beta-complex32-and-complex-convolutions-in-pytorch) (28 June 2022), Complex32 and Complex Convolutions in PyTorch.
- Since [v0.2](https://github.com/wavefrontshaping/complexPyTorch/releases/tag/0.2) (25 Jan 2021) [complexPyTorch](https://github.com/wavefrontshaping/complexPyTorch) uses complex64 dtype.
- Since [v1.6](https://pytorch.org/blog/pytorch-1.6-released/#beta-complex-numbers) (28 July 2020), pytorch now supports complex vectors and complex gradient as BETA. But still have the same issues that Tensorflow has, so no reason to migrate yet.
## Documentation
Please [Read the Docs](https://complex-valued-neural-networks.readthedocs.io/en/latest/index.html)
## Instalation Guide:
Using [Anaconda](https://anaconda.org/negu93/cvnn)
```
conda install -c negu93 cvnn
```
Using [PIP](https://pypi.org/project/cvnn/)
**Vanilla Version**
installs all the minimum dependencies.
```
pip install cvnn
```
**Plot capabilities**
has the posibility to plot the results obtained with the training with several plot libraries.
```
pip install cvnn[plotter]
```
**Full Version** installs full version with all features
```
pip install cvnn[full]
```
## Short example
From "outside" everything is the same as when using Tensorflow.
``` python
import numpy as np
import tensorflow as tf
# Assume you already have complex data... example numpy arrays of dtype np.complex64
(train_images, train_labels), (test_images, test_labels) = get_dataset() # to be done by each user
model = get_model() # Get your model
# Compile as any TensorFlow model
model.compile(optimizer='adam', metrics=['accuracy'],
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True))
model.summary()
# Train and evaluate
history = model.fit(train_images, train_labels, epochs=epochs, validation_data=(test_images, test_labels))
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
```
The main difference is that you will be using `cvnn` layers instead of Tensorflow layers.
There are some options on how to do it as shown here:
### Sequential API
``` py
import cvnn.layers as complex_layers
def get_model():
model = tf.keras.models.Sequential()
model.add(complex_layers.ComplexInput(input_shape=(32, 32, 3))) # Always use ComplexInput at the start
model.add(complex_layers.ComplexConv2D(32, (3, 3), activation='cart_relu'))
model.add(complex_layers.ComplexAvgPooling2D((2, 2)))
model.add(complex_layers.ComplexConv2D(64, (3, 3), activation='cart_relu'))
model.add(complex_layers.ComplexMaxPooling2D((2, 2)))
model.add(complex_layers.ComplexConv2D(64, (3, 3), activation='cart_relu'))
model.add(complex_layers.ComplexFlatten())
model.add(complex_layers.ComplexDense(64, activation='cart_relu'))
model.add(complex_layers.ComplexDense(10, activation='convert_to_real_with_abs'))
# An activation that casts to real must be used at the last layer.
# The loss function cannot minimize a complex number
return model
```
### Functional API
``` python
import cvnn.layers as complex_layers
def get_model():
inputs = complex_layers.complex_input(shape=(128, 128, 3))
c0 = complex_layers.ComplexConv2D(32, activation='cart_relu', kernel_size=3)(inputs)
c1 = complex_layers.ComplexConv2D(32, activation='cart_relu', kernel_size=3)(c0)
c2 = complex_layers.ComplexMaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='valid')(c1)
t01 = complex_layers.ComplexConv2DTranspose(5, kernel_size=2, strides=(2, 2), activation='cart_relu')(c2)
concat01 = tf.keras.layers.concatenate([t01, c1], axis=-1)
c3 = complex_layers.ComplexConv2D(4, activation='cart_relu', kernel_size=3)(concat01)
out = complex_layers.ComplexConv2D(4, activation='cart_relu', kernel_size=3)(c3)
return tf.keras.Model(inputs, out)
```
## About me & Motivation
[My personal website](https://negu93.github.io/agustinbarrachina/)
I am a PhD student from [Ecole CentraleSupelec](https://www.centralesupelec.fr/)
with a scholarship from [ONERA](https://www.onera.fr/en) and the [DGA](https://www.defense.gouv.fr/dga)
I am basically working with Complex-Valued Neural Networks for my PhD topic.
In the need of making my coding more dynamic I build a library not to have to repeat the same code over and over for little changes and accelerate therefore my coding.
## Cite Me
Alway prefer the [Zenodo](https://zenodo.org/record/4452131/export/hx#.YAkuw-j0mUl) citation.
Next you have a model but beware to change the version and date accordingly.
``` bib
@software{j_agustin_barrachina_2021_4452131,
author = {J Agustin Barrachina},
title = {Complex-Valued Neural Networks (CVNN)},
month = jan,
year = 2021,
publisher = {Zenodo},
version = {v1.0.3},
doi = {10.5281/zenodo.4452131},
url = {https://doi.org/10.5281/zenodo.4452131}
}
```
## Issues
For any issues please report them in [here](https://github.com/NEGU93/cvnn/issues)
This library is tested using [pytest](https://docs.pytest.org/).

%package help
Summary: Development documents and examples for cvnn
Provides: python3-cvnn-doc
%description help
# Complex-Valued Neural Networks (CVNN)
Done by @NEGU93 - J. Agustin Barrachina
[](https://complex-valued-neural-networks.readthedocs.io/en/latest/?badge=latest) [](https://badge.fury.io/py/cvnn) [](https://anaconda.org/negu93/cvnn) [](https://zenodo.org/badge/latestdoi/296050056)
Using this library, the only difference with a Tensorflow code is that you should use `cvnn.layers` module instead of `tf.keras.layers`.
This is a library that uses [Tensorflow](https://www.tensorflow.org) as a back-end to do complex-valued neural networks as CVNNs are barely supported by Tensorflow and not even supported yet for [pytorch](https://github.com/pytorch/pytorch/issues/755) (reason why I decided to use Tensorflow for this library). To the authors knowledge, **this is the first library that actually works with complex data types** instead of real value vectors that are interpreted as real and imaginary part.
Update:
- Since [v1.12](https://pytorch.org/blog/pytorch-1.12-released/#beta-complex32-and-complex-convolutions-in-pytorch) (28 June 2022), Complex32 and Complex Convolutions in PyTorch.
- Since [v0.2](https://github.com/wavefrontshaping/complexPyTorch/releases/tag/0.2) (25 Jan 2021) [complexPyTorch](https://github.com/wavefrontshaping/complexPyTorch) uses complex64 dtype.
- Since [v1.6](https://pytorch.org/blog/pytorch-1.6-released/#beta-complex-numbers) (28 July 2020), pytorch now supports complex vectors and complex gradient as BETA. But still have the same issues that Tensorflow has, so no reason to migrate yet.
## Documentation
Please [Read the Docs](https://complex-valued-neural-networks.readthedocs.io/en/latest/index.html)
## Instalation Guide:
Using [Anaconda](https://anaconda.org/negu93/cvnn)
```
conda install -c negu93 cvnn
```
Using [PIP](https://pypi.org/project/cvnn/)
**Vanilla Version**
installs all the minimum dependencies.
```
pip install cvnn
```
**Plot capabilities**
has the posibility to plot the results obtained with the training with several plot libraries.
```
pip install cvnn[plotter]
```
**Full Version** installs full version with all features
```
pip install cvnn[full]
```
## Short example
From "outside" everything is the same as when using Tensorflow.
``` python
import numpy as np
import tensorflow as tf
# Assume you already have complex data... example numpy arrays of dtype np.complex64
(train_images, train_labels), (test_images, test_labels) = get_dataset() # to be done by each user
model = get_model() # Get your model
# Compile as any TensorFlow model
model.compile(optimizer='adam', metrics=['accuracy'],
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True))
model.summary()
# Train and evaluate
history = model.fit(train_images, train_labels, epochs=epochs, validation_data=(test_images, test_labels))
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
```
The main difference is that you will be using `cvnn` layers instead of Tensorflow layers.
There are some options on how to do it as shown here:
### Sequential API
``` py
import cvnn.layers as complex_layers
def get_model():
model = tf.keras.models.Sequential()
model.add(complex_layers.ComplexInput(input_shape=(32, 32, 3))) # Always use ComplexInput at the start
model.add(complex_layers.ComplexConv2D(32, (3, 3), activation='cart_relu'))
model.add(complex_layers.ComplexAvgPooling2D((2, 2)))
model.add(complex_layers.ComplexConv2D(64, (3, 3), activation='cart_relu'))
model.add(complex_layers.ComplexMaxPooling2D((2, 2)))
model.add(complex_layers.ComplexConv2D(64, (3, 3), activation='cart_relu'))
model.add(complex_layers.ComplexFlatten())
model.add(complex_layers.ComplexDense(64, activation='cart_relu'))
model.add(complex_layers.ComplexDense(10, activation='convert_to_real_with_abs'))
# An activation that casts to real must be used at the last layer.
# The loss function cannot minimize a complex number
return model
```
### Functional API
``` python
import cvnn.layers as complex_layers
def get_model():
inputs = complex_layers.complex_input(shape=(128, 128, 3))
c0 = complex_layers.ComplexConv2D(32, activation='cart_relu', kernel_size=3)(inputs)
c1 = complex_layers.ComplexConv2D(32, activation='cart_relu', kernel_size=3)(c0)
c2 = complex_layers.ComplexMaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='valid')(c1)
t01 = complex_layers.ComplexConv2DTranspose(5, kernel_size=2, strides=(2, 2), activation='cart_relu')(c2)
concat01 = tf.keras.layers.concatenate([t01, c1], axis=-1)
c3 = complex_layers.ComplexConv2D(4, activation='cart_relu', kernel_size=3)(concat01)
out = complex_layers.ComplexConv2D(4, activation='cart_relu', kernel_size=3)(c3)
return tf.keras.Model(inputs, out)
```
## About me & Motivation
[My personal website](https://negu93.github.io/agustinbarrachina/)
I am a PhD student from [Ecole CentraleSupelec](https://www.centralesupelec.fr/)
with a scholarship from [ONERA](https://www.onera.fr/en) and the [DGA](https://www.defense.gouv.fr/dga)
I am basically working with Complex-Valued Neural Networks for my PhD topic.
In the need of making my coding more dynamic I build a library not to have to repeat the same code over and over for little changes and accelerate therefore my coding.
## Cite Me
Alway prefer the [Zenodo](https://zenodo.org/record/4452131/export/hx#.YAkuw-j0mUl) citation.
Next you have a model but beware to change the version and date accordingly.
``` bib
@software{j_agustin_barrachina_2021_4452131,
author = {J Agustin Barrachina},
title = {Complex-Valued Neural Networks (CVNN)},
month = jan,
year = 2021,
publisher = {Zenodo},
version = {v1.0.3},
doi = {10.5281/zenodo.4452131},
url = {https://doi.org/10.5281/zenodo.4452131}
}
```
## Issues
For any issues please report them in [here](https://github.com/NEGU93/cvnn/issues)
This library is tested using [pytest](https://docs.pytest.org/).

%prep
%autosetup -n cvnn-2.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-cvnn -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 2.0-1
- Package Spec generated
|