1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
|
%global _empty_manifest_terminate_build 0
Name: python-dask-labextension
Version: 6.1.0
Release: 1
Summary: A JupyterLab extension for Dask.
License: BSD-3-Clause
URL: https://github.com/dask/dask-labextension
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/2c/a6/f707660c2bebb2394dd0f879b193bb235c039f722ab793dd885e97e2d09d/dask_labextension-6.1.0.tar.gz
BuildArch: noarch
Requires: python3-bokeh
Requires: python3-distributed
Requires: python3-jupyter-server-proxy
Requires: python3-jupyterlab
%description
# Dask JupyterLab Extension
[](https://travis-ci.org/dask/dask-labextension) [](https://www.npmjs.com/package/dask-labextension) [](https://www.npmjs.com/package/dask-labextension) [](https://libraries.io/npm/dask-labextension)
This package provides a JupyterLab extension to manage Dask clusters,
as well as embed Dask's dashboard plots directly into JupyterLab panes.

## Explanatory Video (5 minutes)
<a href="http://www.youtube.com/watch?feature=player_embedded&v=EX_voquHdk0 "
target="_blank">
<img src="http://img.youtube.com/vi/EX_voquHdk0/0.jpg"
alt="Dask + JupyterLab Screencast" width="560" height="315" border="10" />
</a>
## Requirements
JupyterLab >= 1.0
distributed >= 1.24.1
## Installation
To install the Dask JupyterLab extension you will need to have JupyterLab installed.
For JupyterLab < 3.0, you will also need [Node.js](https://nodejs.org/) version >= 12.
These are available through a variety of sources.
One source common to Python users is the conda package manager.
```bash
conda install jupyterlab
conda install -c conda-forge nodejs
```
### JupyterLab 3.0 or greater
You should be able to install this extension with pip or conda,
and start using it immediately, e.g.
```bash
pip install dask-labextension
```
### JupyterLab 3.x
This extension includes both client-side and server-side components.
Prior to JupyterLab 3.0 these needed to be installed separately,
with node available on the machine.
The server-side component can be installed via pip or conda-forge:
```bash
pip install dask_labextension
```
```bash
conda install -c conda-forge dask-labextension
```
You then build the client-side extension into JupyterLab with:
```bash
jupyter labextension install dask-labextension
```
If you are running Notebook 5.2 or earlier, enable the server extension by running
```bash
jupyter serverextension enable --py --sys-prefix dask_labextension
```
## Configuration of Dask cluster management
This extension has the ability to launch and manage several kinds of Dask clusters,
including local clusters and kubernetes clusters.
Options for how to launch these clusters are set via the
[dask configuration system](http://docs.dask.org/en/latest/configuration.html#configuration),
typically a `.yml` file on disk.
By default the extension launches a `LocalCluster`, for which the configuration is:
```yaml
labextension:
factory:
module: 'dask.distributed'
class: 'LocalCluster'
args: []
kwargs: {}
default:
workers: null
adapt:
null
# minimum: 0
# maximum: 10
initial:
[]
# - name: "My Big Cluster"
# workers: 100
# - name: "Adaptive Cluster"
# adapt:
# minimum: 0
# maximum: 50
```
In this configuration, `factory` gives the module, class name, and arguments needed to create the cluster.
The `default` key describes the initial number of workers for the cluster, as well as whether it is adaptive.
The `initial` key gives a list of initial clusters to start upon launch of the notebook server.
In addition to `LocalCluster`, this extension has been used to launch several other Dask cluster
objects, a few examples of which are:
- A SLURM cluster, using
```yaml
labextension:
factory:
module: 'dask_jobqueue'
class: 'SLURMCluster'
args: []
kwargs: {}
```
- A PBS cluster, using
```yaml
labextension:
factory:
module: 'dask_jobqueue'
class: 'PBSCluster'
args: []
kwargs: {}
```
- A [Kubernetes cluster](https://github.com/pangeo-data/pangeo-cloud-federation/blob/8f7f4bf9963ef1ed180dd20c952ff1aa8df54ca2/deployments/ocean/image/binder/dask_config.yaml#L37-L42), using
```yaml
labextension:
factory:
module: dask_kubernetes
class: KubeCluster
args: []
kwargs: {}
```
## Configuring a default layout
This extension can store a default layout for the Dask dashboard panes,
which is useful if you find yourself reaching for the same dashboard charts over and over.
You can launch the default layout via the command palette,
or by going to the File menu and choosing "Launch Dask Dashboard Layout".
Default layouts can be configured via the JupyterLab config system
(either using the JSON editor or the user interface).
Specify a layout by writing a JSON object keyed by the
[individual charts](https://github.com/dask/distributed/blob/f31fbde748294065ed70dd5c4399821fa664a9f1/distributed/dashboard/scheduler.py#L72-L117)
you would like to open.
Each chart is opened with a `mode`, and a `ref`.
`mode` refers to how the chart is to be added to the workspace.
For example, if you want to split a panel and add the new one to the right, choose `split-right`.
Other options are `split-top`, `split-bottom`, `split-left`, `tab-after`, and `tab-before`.
`ref` refers to the panel to which `mode` is applied, and might be the names of other dashboard panels.
If `ref` is `null`, the panel in question is added at the top of the layout hierarchy.
A concrete example of a default layout is
```json
{
"individual-task-stream": {
"mode": "split-right",
"ref": null
},
"individual-workers-memory": {
"mode": "split-bottom",
"ref": "individual-task-stream"
},
"individual-progress": {
"mode": "split-right",
"ref": "individual-workers-memory"
}
}
```
which adds the task stream to the right of the workspace,
then adds the worker memory chart below the task stream,
then adds the progress chart to the right of the worker memory chart.
## Development install
As described in the [JupyterLab documentation](https://jupyterlab.readthedocs.io/en/stable/extension/extension_dev.html#developing-a-prebuilt-extension)
for a development install of the labextension you can run the following in this directory:
```bash
jlpm # Install npm package dependencies
jlpm build # Compile the TypeScript sources to Javascript
jupyter labextension develop . --overwrite # Install the current directory as an extension
```
To rebuild the extension:
```bash
jlpm build
```
You should then be able to refresh the JupyterLab page
and it will pick up the changes to the extension.
To run an editable install of the server extension, run
```bash
pip install -e .
jupyter serverextension enable --sys-prefix dask_labextension
```
## Publishing
This application is distributed as two subpackages.
The JupyterLab frontend part is published to [npm](https://www.npmjs.com/package/dask-labextension),
and the server-side part to [PyPI](https://pypi.org/project/dask-labextension/).
Releases for both packages are done with the `jlpm` tool, `git` and Travis CI.
_Note: Package versions are not prefixed with the letter `v`. You will need to disable this._
```console
$ jlpm config set version-tag-prefix ""
```
Making a release
```console
$ jlpm version [--major|--minor|--patch] # updates package.json and creates git commit and tag
$ git push upstream main && git push upstream main --tags # pushes tags to GitHub which triggers Travis CI to build and deploy
```
%package -n python3-dask-labextension
Summary: A JupyterLab extension for Dask.
Provides: python-dask-labextension
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-dask-labextension
# Dask JupyterLab Extension
[](https://travis-ci.org/dask/dask-labextension) [](https://www.npmjs.com/package/dask-labextension) [](https://www.npmjs.com/package/dask-labextension) [](https://libraries.io/npm/dask-labextension)
This package provides a JupyterLab extension to manage Dask clusters,
as well as embed Dask's dashboard plots directly into JupyterLab panes.

## Explanatory Video (5 minutes)
<a href="http://www.youtube.com/watch?feature=player_embedded&v=EX_voquHdk0 "
target="_blank">
<img src="http://img.youtube.com/vi/EX_voquHdk0/0.jpg"
alt="Dask + JupyterLab Screencast" width="560" height="315" border="10" />
</a>
## Requirements
JupyterLab >= 1.0
distributed >= 1.24.1
## Installation
To install the Dask JupyterLab extension you will need to have JupyterLab installed.
For JupyterLab < 3.0, you will also need [Node.js](https://nodejs.org/) version >= 12.
These are available through a variety of sources.
One source common to Python users is the conda package manager.
```bash
conda install jupyterlab
conda install -c conda-forge nodejs
```
### JupyterLab 3.0 or greater
You should be able to install this extension with pip or conda,
and start using it immediately, e.g.
```bash
pip install dask-labextension
```
### JupyterLab 3.x
This extension includes both client-side and server-side components.
Prior to JupyterLab 3.0 these needed to be installed separately,
with node available on the machine.
The server-side component can be installed via pip or conda-forge:
```bash
pip install dask_labextension
```
```bash
conda install -c conda-forge dask-labextension
```
You then build the client-side extension into JupyterLab with:
```bash
jupyter labextension install dask-labextension
```
If you are running Notebook 5.2 or earlier, enable the server extension by running
```bash
jupyter serverextension enable --py --sys-prefix dask_labextension
```
## Configuration of Dask cluster management
This extension has the ability to launch and manage several kinds of Dask clusters,
including local clusters and kubernetes clusters.
Options for how to launch these clusters are set via the
[dask configuration system](http://docs.dask.org/en/latest/configuration.html#configuration),
typically a `.yml` file on disk.
By default the extension launches a `LocalCluster`, for which the configuration is:
```yaml
labextension:
factory:
module: 'dask.distributed'
class: 'LocalCluster'
args: []
kwargs: {}
default:
workers: null
adapt:
null
# minimum: 0
# maximum: 10
initial:
[]
# - name: "My Big Cluster"
# workers: 100
# - name: "Adaptive Cluster"
# adapt:
# minimum: 0
# maximum: 50
```
In this configuration, `factory` gives the module, class name, and arguments needed to create the cluster.
The `default` key describes the initial number of workers for the cluster, as well as whether it is adaptive.
The `initial` key gives a list of initial clusters to start upon launch of the notebook server.
In addition to `LocalCluster`, this extension has been used to launch several other Dask cluster
objects, a few examples of which are:
- A SLURM cluster, using
```yaml
labextension:
factory:
module: 'dask_jobqueue'
class: 'SLURMCluster'
args: []
kwargs: {}
```
- A PBS cluster, using
```yaml
labextension:
factory:
module: 'dask_jobqueue'
class: 'PBSCluster'
args: []
kwargs: {}
```
- A [Kubernetes cluster](https://github.com/pangeo-data/pangeo-cloud-federation/blob/8f7f4bf9963ef1ed180dd20c952ff1aa8df54ca2/deployments/ocean/image/binder/dask_config.yaml#L37-L42), using
```yaml
labextension:
factory:
module: dask_kubernetes
class: KubeCluster
args: []
kwargs: {}
```
## Configuring a default layout
This extension can store a default layout for the Dask dashboard panes,
which is useful if you find yourself reaching for the same dashboard charts over and over.
You can launch the default layout via the command palette,
or by going to the File menu and choosing "Launch Dask Dashboard Layout".
Default layouts can be configured via the JupyterLab config system
(either using the JSON editor or the user interface).
Specify a layout by writing a JSON object keyed by the
[individual charts](https://github.com/dask/distributed/blob/f31fbde748294065ed70dd5c4399821fa664a9f1/distributed/dashboard/scheduler.py#L72-L117)
you would like to open.
Each chart is opened with a `mode`, and a `ref`.
`mode` refers to how the chart is to be added to the workspace.
For example, if you want to split a panel and add the new one to the right, choose `split-right`.
Other options are `split-top`, `split-bottom`, `split-left`, `tab-after`, and `tab-before`.
`ref` refers to the panel to which `mode` is applied, and might be the names of other dashboard panels.
If `ref` is `null`, the panel in question is added at the top of the layout hierarchy.
A concrete example of a default layout is
```json
{
"individual-task-stream": {
"mode": "split-right",
"ref": null
},
"individual-workers-memory": {
"mode": "split-bottom",
"ref": "individual-task-stream"
},
"individual-progress": {
"mode": "split-right",
"ref": "individual-workers-memory"
}
}
```
which adds the task stream to the right of the workspace,
then adds the worker memory chart below the task stream,
then adds the progress chart to the right of the worker memory chart.
## Development install
As described in the [JupyterLab documentation](https://jupyterlab.readthedocs.io/en/stable/extension/extension_dev.html#developing-a-prebuilt-extension)
for a development install of the labextension you can run the following in this directory:
```bash
jlpm # Install npm package dependencies
jlpm build # Compile the TypeScript sources to Javascript
jupyter labextension develop . --overwrite # Install the current directory as an extension
```
To rebuild the extension:
```bash
jlpm build
```
You should then be able to refresh the JupyterLab page
and it will pick up the changes to the extension.
To run an editable install of the server extension, run
```bash
pip install -e .
jupyter serverextension enable --sys-prefix dask_labextension
```
## Publishing
This application is distributed as two subpackages.
The JupyterLab frontend part is published to [npm](https://www.npmjs.com/package/dask-labextension),
and the server-side part to [PyPI](https://pypi.org/project/dask-labextension/).
Releases for both packages are done with the `jlpm` tool, `git` and Travis CI.
_Note: Package versions are not prefixed with the letter `v`. You will need to disable this._
```console
$ jlpm config set version-tag-prefix ""
```
Making a release
```console
$ jlpm version [--major|--minor|--patch] # updates package.json and creates git commit and tag
$ git push upstream main && git push upstream main --tags # pushes tags to GitHub which triggers Travis CI to build and deploy
```
%package help
Summary: Development documents and examples for dask-labextension
Provides: python3-dask-labextension-doc
%description help
# Dask JupyterLab Extension
[](https://travis-ci.org/dask/dask-labextension) [](https://www.npmjs.com/package/dask-labextension) [](https://www.npmjs.com/package/dask-labextension) [](https://libraries.io/npm/dask-labextension)
This package provides a JupyterLab extension to manage Dask clusters,
as well as embed Dask's dashboard plots directly into JupyterLab panes.

## Explanatory Video (5 minutes)
<a href="http://www.youtube.com/watch?feature=player_embedded&v=EX_voquHdk0 "
target="_blank">
<img src="http://img.youtube.com/vi/EX_voquHdk0/0.jpg"
alt="Dask + JupyterLab Screencast" width="560" height="315" border="10" />
</a>
## Requirements
JupyterLab >= 1.0
distributed >= 1.24.1
## Installation
To install the Dask JupyterLab extension you will need to have JupyterLab installed.
For JupyterLab < 3.0, you will also need [Node.js](https://nodejs.org/) version >= 12.
These are available through a variety of sources.
One source common to Python users is the conda package manager.
```bash
conda install jupyterlab
conda install -c conda-forge nodejs
```
### JupyterLab 3.0 or greater
You should be able to install this extension with pip or conda,
and start using it immediately, e.g.
```bash
pip install dask-labextension
```
### JupyterLab 3.x
This extension includes both client-side and server-side components.
Prior to JupyterLab 3.0 these needed to be installed separately,
with node available on the machine.
The server-side component can be installed via pip or conda-forge:
```bash
pip install dask_labextension
```
```bash
conda install -c conda-forge dask-labextension
```
You then build the client-side extension into JupyterLab with:
```bash
jupyter labextension install dask-labextension
```
If you are running Notebook 5.2 or earlier, enable the server extension by running
```bash
jupyter serverextension enable --py --sys-prefix dask_labextension
```
## Configuration of Dask cluster management
This extension has the ability to launch and manage several kinds of Dask clusters,
including local clusters and kubernetes clusters.
Options for how to launch these clusters are set via the
[dask configuration system](http://docs.dask.org/en/latest/configuration.html#configuration),
typically a `.yml` file on disk.
By default the extension launches a `LocalCluster`, for which the configuration is:
```yaml
labextension:
factory:
module: 'dask.distributed'
class: 'LocalCluster'
args: []
kwargs: {}
default:
workers: null
adapt:
null
# minimum: 0
# maximum: 10
initial:
[]
# - name: "My Big Cluster"
# workers: 100
# - name: "Adaptive Cluster"
# adapt:
# minimum: 0
# maximum: 50
```
In this configuration, `factory` gives the module, class name, and arguments needed to create the cluster.
The `default` key describes the initial number of workers for the cluster, as well as whether it is adaptive.
The `initial` key gives a list of initial clusters to start upon launch of the notebook server.
In addition to `LocalCluster`, this extension has been used to launch several other Dask cluster
objects, a few examples of which are:
- A SLURM cluster, using
```yaml
labextension:
factory:
module: 'dask_jobqueue'
class: 'SLURMCluster'
args: []
kwargs: {}
```
- A PBS cluster, using
```yaml
labextension:
factory:
module: 'dask_jobqueue'
class: 'PBSCluster'
args: []
kwargs: {}
```
- A [Kubernetes cluster](https://github.com/pangeo-data/pangeo-cloud-federation/blob/8f7f4bf9963ef1ed180dd20c952ff1aa8df54ca2/deployments/ocean/image/binder/dask_config.yaml#L37-L42), using
```yaml
labextension:
factory:
module: dask_kubernetes
class: KubeCluster
args: []
kwargs: {}
```
## Configuring a default layout
This extension can store a default layout for the Dask dashboard panes,
which is useful if you find yourself reaching for the same dashboard charts over and over.
You can launch the default layout via the command palette,
or by going to the File menu and choosing "Launch Dask Dashboard Layout".
Default layouts can be configured via the JupyterLab config system
(either using the JSON editor or the user interface).
Specify a layout by writing a JSON object keyed by the
[individual charts](https://github.com/dask/distributed/blob/f31fbde748294065ed70dd5c4399821fa664a9f1/distributed/dashboard/scheduler.py#L72-L117)
you would like to open.
Each chart is opened with a `mode`, and a `ref`.
`mode` refers to how the chart is to be added to the workspace.
For example, if you want to split a panel and add the new one to the right, choose `split-right`.
Other options are `split-top`, `split-bottom`, `split-left`, `tab-after`, and `tab-before`.
`ref` refers to the panel to which `mode` is applied, and might be the names of other dashboard panels.
If `ref` is `null`, the panel in question is added at the top of the layout hierarchy.
A concrete example of a default layout is
```json
{
"individual-task-stream": {
"mode": "split-right",
"ref": null
},
"individual-workers-memory": {
"mode": "split-bottom",
"ref": "individual-task-stream"
},
"individual-progress": {
"mode": "split-right",
"ref": "individual-workers-memory"
}
}
```
which adds the task stream to the right of the workspace,
then adds the worker memory chart below the task stream,
then adds the progress chart to the right of the worker memory chart.
## Development install
As described in the [JupyterLab documentation](https://jupyterlab.readthedocs.io/en/stable/extension/extension_dev.html#developing-a-prebuilt-extension)
for a development install of the labextension you can run the following in this directory:
```bash
jlpm # Install npm package dependencies
jlpm build # Compile the TypeScript sources to Javascript
jupyter labextension develop . --overwrite # Install the current directory as an extension
```
To rebuild the extension:
```bash
jlpm build
```
You should then be able to refresh the JupyterLab page
and it will pick up the changes to the extension.
To run an editable install of the server extension, run
```bash
pip install -e .
jupyter serverextension enable --sys-prefix dask_labextension
```
## Publishing
This application is distributed as two subpackages.
The JupyterLab frontend part is published to [npm](https://www.npmjs.com/package/dask-labextension),
and the server-side part to [PyPI](https://pypi.org/project/dask-labextension/).
Releases for both packages are done with the `jlpm` tool, `git` and Travis CI.
_Note: Package versions are not prefixed with the letter `v`. You will need to disable this._
```console
$ jlpm config set version-tag-prefix ""
```
Making a release
```console
$ jlpm version [--major|--minor|--patch] # updates package.json and creates git commit and tag
$ git push upstream main && git push upstream main --tags # pushes tags to GitHub which triggers Travis CI to build and deploy
```
%prep
%autosetup -n dask-labextension-6.1.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-dask-labextension -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 6.1.0-1
- Package Spec generated
|