summaryrefslogtreecommitdiff
path: root/python-dask-saturn.spec
blob: 19a3cd6bae2c00fc823734585260908c4cb6aca3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
%global _empty_manifest_terminate_build 0
Name:		python-dask-saturn
Version:	0.4.3
Release:	1
Summary:	Dask Cluster objects in Saturn Cloud
License:	BSD-3-Clause
URL:		https://saturncloud.io/
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/cd/5a/c92de73b69107428700fbd793cc0e7f5a66fe19e7515236819ee5d9a44eb/dask-saturn-0.4.3.tar.gz
BuildArch:	noarch

Requires:	python3-distributed
Requires:	python3-packaging
Requires:	python3-requests
Requires:	python3-cryptography

%description
# dask-saturn
Python library for interacting with [Dask](https://dask.org/) clusters in
[Saturn Cloud](https://www.saturncloud.io/).

Dask-Saturn mimics the API of
[Dask-Kubernetes](https://github.com/dask/dask-kubernetes), but allows the user
to interact with clusters created within
[Saturn Cloud](https://www.saturncloud.io/).

## Start cluster
From within a Jupyter notebook, you can start a cluster:

```python
from dask_saturn import SaturnCluster

cluster = SaturnCluster()
cluster
```

By default this will start a dask cluster with the same settings that you have
already set in the Saturn UI or in a prior notebook.

To start the cluster with a certain number of workers using the `n_workers`
option. Similarly, you can set the `scheduler_size`, `worker_size`, and `worker_is_spot`.

> Note: If the cluster is already running then you can't change the settings.
> Attempting to do so will raise a warning.

Use the `shudown_on_close` option to set up a cluster that is tied to the client
kernel. This functions like a regular dask `LocalCluster`, when your jupyter
kernel dies or is restarted, the dask cluster will close.

## Adjust number of workers
Once you have a cluster you can interact with it via the jupyter
widget, or using the `scale` and `adapt` methods.

For example, to manually scale up to 20 workers:

```python
cluster.scale(20)
```

To create an adaptive cluster that controls its own scaling:

```python
cluster.adapt(minimum=1, maximum=20)
```

## Interact with client
To submit tasks to the cluster, you sometimes need access to the
`Client` object. Instantiate this with the cluster as the only argument:

```python
from distributed import Client

client = Client(cluster)
client
```

## Close cluster

To terminate all resources associated with a cluster, use the
`close` method:

```python
cluster.close()
```

## Change settings

To update the settings (such as `n_workers`, `worker_size`, `worker_is_spot`, `nthreads`) on an existing cluster, use the `reset` method:

```python
cluster.reset(n_workers=3)
```

You can also call this without instantiating the cluster first:

```python
cluster = SaturnCluster.reset(n_workers=3)
```

By default, you'll get one worker, but you can change that using the `n_workers` option. Similarly you can override the scheduler and worker hardware settings with `scheduler_size`, `worker_size`. You can display the available size options using `describe_sizes()`:

```python
>>> describe_sizes()
{'medium': 'Medium - 2 cores - 4 GB RAM',
 'large': 'Large - 2 cores - 16 GB RAM',
 'xlarge': 'XLarge - 4 cores - 32 GB RAM',
 '2xlarge': '2XLarge - 8 cores - 64 GB RAM',
 '4xlarge': '4XLarge - 16 cores - 128 GB RAM',
 '8xlarge': '8XLarge - 32 cores - 256 GB RAM',
 '12xlarge': '12XLarge - 48 cores - 384 GB RAM',
 '16xlarge': '16XLarge - 64 cores - 512 GB RAM',
 'g4dnxlarge': 'T4-XLarge - 4 cores - 16 GB RAM - 1 GPU',
 'g4dn4xlarge': 'T4-4XLarge - 16 cores - 64 GB RAM - 1 GPU',
 'g4dn8xlarge': 'T4-8XLarge - 32 cores - 128 GB RAM - 1 GPU',
 'p32xlarge': 'V100-2XLarge - 8 cores - 61 GB RAM - 1 GPU',
 'p38xlarge': 'V100-8XLarge - 32 cores - 244 GB RAM - 4 GPU',
 'p316xlarge': 'V100-16XLarge - 64 cores - 488 GB RAM - 8 GPU'}
```

Here's an example:

```python
cluster = SaturnCluster(
    scheduler_size="large",
    worker_size="2xlarge",
    n_workers=3,
)
client = Client(cluster)
client
```

## Connect from outside of Saturn

To connect to your Dask cluster from outside of Saturn, you need to set two environment variables: ``SATURN_TOKEN`` and ``SATURN_BASE_URL``.

To get the values for these you'll need to go Saturn in your browser. Go to where you want to connect a Dask cluster. There will be a button that says:
"Connect Externally". Clicking that will open a modal with the values for ``SATURN_TOKEN`` and ``SATURN_BASE_URL``

Remember - that token is private so don't share it with anyone! It'll be a something like `351e6f2d40bf4d15a0009fc086c602df`

```sh
export SATURN_BASE_URL="https://app.demo.saturnenterprise.io"
export SATURN_TOKEN="351e6f2d40bf4d15a0009fc086c602df"
```

After you have set the environment variables, you can open a Python session and connect to your Dask cluster just as you would inside of Saturn:

```python
from dask_saturn import SaturnCluster
from distributed import Client

cluster = SaturnCluster()
client = Client(cluster)
client
```

When you are done working with the dask cluster make sure to shut it down:

```python
cluster.close()
```

## Sync files to workers

When working with distributed dask clusters, the workers don't have access to the same file system as your client does. So you will see files in your jupyter server that aren't available on the workers. To move files to the workers you can use the `RegisterFiles` plugin and call `sync_files` on any path that you want to update on the workers.

For instance if you have a file structure like:
```
/home/jovyan/project/
|---- utils/
|   |---- __init__.py
|   |---- hello.py
|
|---- Untitled.ipynb
```

where hello.py contains:

```python
# utils/hello.py
def greet():
    return "Hello"
```

If the code in hello.py changes or you add new files to utils, you'll want to push those changes to the workers. After setting up the `SaturnCluster` and the `Client`, register the `RegisterFiles` plugin with the workers. Then every time you make changes to the files in utils, run `sync_files`. The worker plugin makes sure that any new worker that comes up will have any files that you have synced.

```python
from dask_saturn import RegisterFiles, sync_files

client.register_worker_plugin(RegisterFiles())
sync_files(client, "utils")

# If a python script has changed, restart the workers so they will see the changes
client.restart()

# import the function and tell the workers to run it
from util.hello import greet
client.run(greet)
```

> TIP: You can always check the state of the filesystem on your workers by running `client.run(os.listdir)`

## Development

Create/update a dask-saturn conda environment:

```sh
make conda-update
```

Set environment variables to run dask-saturn with a local atlas server:

```sh
export SATURN_BASE_URL=http://dev.localtest.me:8888/
export SATURN_TOKEN=<JUPYTER_SERVER_SATURN_TOKEN>
```




%package -n python3-dask-saturn
Summary:	Dask Cluster objects in Saturn Cloud
Provides:	python-dask-saturn
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-dask-saturn
# dask-saturn
Python library for interacting with [Dask](https://dask.org/) clusters in
[Saturn Cloud](https://www.saturncloud.io/).

Dask-Saturn mimics the API of
[Dask-Kubernetes](https://github.com/dask/dask-kubernetes), but allows the user
to interact with clusters created within
[Saturn Cloud](https://www.saturncloud.io/).

## Start cluster
From within a Jupyter notebook, you can start a cluster:

```python
from dask_saturn import SaturnCluster

cluster = SaturnCluster()
cluster
```

By default this will start a dask cluster with the same settings that you have
already set in the Saturn UI or in a prior notebook.

To start the cluster with a certain number of workers using the `n_workers`
option. Similarly, you can set the `scheduler_size`, `worker_size`, and `worker_is_spot`.

> Note: If the cluster is already running then you can't change the settings.
> Attempting to do so will raise a warning.

Use the `shudown_on_close` option to set up a cluster that is tied to the client
kernel. This functions like a regular dask `LocalCluster`, when your jupyter
kernel dies or is restarted, the dask cluster will close.

## Adjust number of workers
Once you have a cluster you can interact with it via the jupyter
widget, or using the `scale` and `adapt` methods.

For example, to manually scale up to 20 workers:

```python
cluster.scale(20)
```

To create an adaptive cluster that controls its own scaling:

```python
cluster.adapt(minimum=1, maximum=20)
```

## Interact with client
To submit tasks to the cluster, you sometimes need access to the
`Client` object. Instantiate this with the cluster as the only argument:

```python
from distributed import Client

client = Client(cluster)
client
```

## Close cluster

To terminate all resources associated with a cluster, use the
`close` method:

```python
cluster.close()
```

## Change settings

To update the settings (such as `n_workers`, `worker_size`, `worker_is_spot`, `nthreads`) on an existing cluster, use the `reset` method:

```python
cluster.reset(n_workers=3)
```

You can also call this without instantiating the cluster first:

```python
cluster = SaturnCluster.reset(n_workers=3)
```

By default, you'll get one worker, but you can change that using the `n_workers` option. Similarly you can override the scheduler and worker hardware settings with `scheduler_size`, `worker_size`. You can display the available size options using `describe_sizes()`:

```python
>>> describe_sizes()
{'medium': 'Medium - 2 cores - 4 GB RAM',
 'large': 'Large - 2 cores - 16 GB RAM',
 'xlarge': 'XLarge - 4 cores - 32 GB RAM',
 '2xlarge': '2XLarge - 8 cores - 64 GB RAM',
 '4xlarge': '4XLarge - 16 cores - 128 GB RAM',
 '8xlarge': '8XLarge - 32 cores - 256 GB RAM',
 '12xlarge': '12XLarge - 48 cores - 384 GB RAM',
 '16xlarge': '16XLarge - 64 cores - 512 GB RAM',
 'g4dnxlarge': 'T4-XLarge - 4 cores - 16 GB RAM - 1 GPU',
 'g4dn4xlarge': 'T4-4XLarge - 16 cores - 64 GB RAM - 1 GPU',
 'g4dn8xlarge': 'T4-8XLarge - 32 cores - 128 GB RAM - 1 GPU',
 'p32xlarge': 'V100-2XLarge - 8 cores - 61 GB RAM - 1 GPU',
 'p38xlarge': 'V100-8XLarge - 32 cores - 244 GB RAM - 4 GPU',
 'p316xlarge': 'V100-16XLarge - 64 cores - 488 GB RAM - 8 GPU'}
```

Here's an example:

```python
cluster = SaturnCluster(
    scheduler_size="large",
    worker_size="2xlarge",
    n_workers=3,
)
client = Client(cluster)
client
```

## Connect from outside of Saturn

To connect to your Dask cluster from outside of Saturn, you need to set two environment variables: ``SATURN_TOKEN`` and ``SATURN_BASE_URL``.

To get the values for these you'll need to go Saturn in your browser. Go to where you want to connect a Dask cluster. There will be a button that says:
"Connect Externally". Clicking that will open a modal with the values for ``SATURN_TOKEN`` and ``SATURN_BASE_URL``

Remember - that token is private so don't share it with anyone! It'll be a something like `351e6f2d40bf4d15a0009fc086c602df`

```sh
export SATURN_BASE_URL="https://app.demo.saturnenterprise.io"
export SATURN_TOKEN="351e6f2d40bf4d15a0009fc086c602df"
```

After you have set the environment variables, you can open a Python session and connect to your Dask cluster just as you would inside of Saturn:

```python
from dask_saturn import SaturnCluster
from distributed import Client

cluster = SaturnCluster()
client = Client(cluster)
client
```

When you are done working with the dask cluster make sure to shut it down:

```python
cluster.close()
```

## Sync files to workers

When working with distributed dask clusters, the workers don't have access to the same file system as your client does. So you will see files in your jupyter server that aren't available on the workers. To move files to the workers you can use the `RegisterFiles` plugin and call `sync_files` on any path that you want to update on the workers.

For instance if you have a file structure like:
```
/home/jovyan/project/
|---- utils/
|   |---- __init__.py
|   |---- hello.py
|
|---- Untitled.ipynb
```

where hello.py contains:

```python
# utils/hello.py
def greet():
    return "Hello"
```

If the code in hello.py changes or you add new files to utils, you'll want to push those changes to the workers. After setting up the `SaturnCluster` and the `Client`, register the `RegisterFiles` plugin with the workers. Then every time you make changes to the files in utils, run `sync_files`. The worker plugin makes sure that any new worker that comes up will have any files that you have synced.

```python
from dask_saturn import RegisterFiles, sync_files

client.register_worker_plugin(RegisterFiles())
sync_files(client, "utils")

# If a python script has changed, restart the workers so they will see the changes
client.restart()

# import the function and tell the workers to run it
from util.hello import greet
client.run(greet)
```

> TIP: You can always check the state of the filesystem on your workers by running `client.run(os.listdir)`

## Development

Create/update a dask-saturn conda environment:

```sh
make conda-update
```

Set environment variables to run dask-saturn with a local atlas server:

```sh
export SATURN_BASE_URL=http://dev.localtest.me:8888/
export SATURN_TOKEN=<JUPYTER_SERVER_SATURN_TOKEN>
```




%package help
Summary:	Development documents and examples for dask-saturn
Provides:	python3-dask-saturn-doc
%description help
# dask-saturn
Python library for interacting with [Dask](https://dask.org/) clusters in
[Saturn Cloud](https://www.saturncloud.io/).

Dask-Saturn mimics the API of
[Dask-Kubernetes](https://github.com/dask/dask-kubernetes), but allows the user
to interact with clusters created within
[Saturn Cloud](https://www.saturncloud.io/).

## Start cluster
From within a Jupyter notebook, you can start a cluster:

```python
from dask_saturn import SaturnCluster

cluster = SaturnCluster()
cluster
```

By default this will start a dask cluster with the same settings that you have
already set in the Saturn UI or in a prior notebook.

To start the cluster with a certain number of workers using the `n_workers`
option. Similarly, you can set the `scheduler_size`, `worker_size`, and `worker_is_spot`.

> Note: If the cluster is already running then you can't change the settings.
> Attempting to do so will raise a warning.

Use the `shudown_on_close` option to set up a cluster that is tied to the client
kernel. This functions like a regular dask `LocalCluster`, when your jupyter
kernel dies or is restarted, the dask cluster will close.

## Adjust number of workers
Once you have a cluster you can interact with it via the jupyter
widget, or using the `scale` and `adapt` methods.

For example, to manually scale up to 20 workers:

```python
cluster.scale(20)
```

To create an adaptive cluster that controls its own scaling:

```python
cluster.adapt(minimum=1, maximum=20)
```

## Interact with client
To submit tasks to the cluster, you sometimes need access to the
`Client` object. Instantiate this with the cluster as the only argument:

```python
from distributed import Client

client = Client(cluster)
client
```

## Close cluster

To terminate all resources associated with a cluster, use the
`close` method:

```python
cluster.close()
```

## Change settings

To update the settings (such as `n_workers`, `worker_size`, `worker_is_spot`, `nthreads`) on an existing cluster, use the `reset` method:

```python
cluster.reset(n_workers=3)
```

You can also call this without instantiating the cluster first:

```python
cluster = SaturnCluster.reset(n_workers=3)
```

By default, you'll get one worker, but you can change that using the `n_workers` option. Similarly you can override the scheduler and worker hardware settings with `scheduler_size`, `worker_size`. You can display the available size options using `describe_sizes()`:

```python
>>> describe_sizes()
{'medium': 'Medium - 2 cores - 4 GB RAM',
 'large': 'Large - 2 cores - 16 GB RAM',
 'xlarge': 'XLarge - 4 cores - 32 GB RAM',
 '2xlarge': '2XLarge - 8 cores - 64 GB RAM',
 '4xlarge': '4XLarge - 16 cores - 128 GB RAM',
 '8xlarge': '8XLarge - 32 cores - 256 GB RAM',
 '12xlarge': '12XLarge - 48 cores - 384 GB RAM',
 '16xlarge': '16XLarge - 64 cores - 512 GB RAM',
 'g4dnxlarge': 'T4-XLarge - 4 cores - 16 GB RAM - 1 GPU',
 'g4dn4xlarge': 'T4-4XLarge - 16 cores - 64 GB RAM - 1 GPU',
 'g4dn8xlarge': 'T4-8XLarge - 32 cores - 128 GB RAM - 1 GPU',
 'p32xlarge': 'V100-2XLarge - 8 cores - 61 GB RAM - 1 GPU',
 'p38xlarge': 'V100-8XLarge - 32 cores - 244 GB RAM - 4 GPU',
 'p316xlarge': 'V100-16XLarge - 64 cores - 488 GB RAM - 8 GPU'}
```

Here's an example:

```python
cluster = SaturnCluster(
    scheduler_size="large",
    worker_size="2xlarge",
    n_workers=3,
)
client = Client(cluster)
client
```

## Connect from outside of Saturn

To connect to your Dask cluster from outside of Saturn, you need to set two environment variables: ``SATURN_TOKEN`` and ``SATURN_BASE_URL``.

To get the values for these you'll need to go Saturn in your browser. Go to where you want to connect a Dask cluster. There will be a button that says:
"Connect Externally". Clicking that will open a modal with the values for ``SATURN_TOKEN`` and ``SATURN_BASE_URL``

Remember - that token is private so don't share it with anyone! It'll be a something like `351e6f2d40bf4d15a0009fc086c602df`

```sh
export SATURN_BASE_URL="https://app.demo.saturnenterprise.io"
export SATURN_TOKEN="351e6f2d40bf4d15a0009fc086c602df"
```

After you have set the environment variables, you can open a Python session and connect to your Dask cluster just as you would inside of Saturn:

```python
from dask_saturn import SaturnCluster
from distributed import Client

cluster = SaturnCluster()
client = Client(cluster)
client
```

When you are done working with the dask cluster make sure to shut it down:

```python
cluster.close()
```

## Sync files to workers

When working with distributed dask clusters, the workers don't have access to the same file system as your client does. So you will see files in your jupyter server that aren't available on the workers. To move files to the workers you can use the `RegisterFiles` plugin and call `sync_files` on any path that you want to update on the workers.

For instance if you have a file structure like:
```
/home/jovyan/project/
|---- utils/
|   |---- __init__.py
|   |---- hello.py
|
|---- Untitled.ipynb
```

where hello.py contains:

```python
# utils/hello.py
def greet():
    return "Hello"
```

If the code in hello.py changes or you add new files to utils, you'll want to push those changes to the workers. After setting up the `SaturnCluster` and the `Client`, register the `RegisterFiles` plugin with the workers. Then every time you make changes to the files in utils, run `sync_files`. The worker plugin makes sure that any new worker that comes up will have any files that you have synced.

```python
from dask_saturn import RegisterFiles, sync_files

client.register_worker_plugin(RegisterFiles())
sync_files(client, "utils")

# If a python script has changed, restart the workers so they will see the changes
client.restart()

# import the function and tell the workers to run it
from util.hello import greet
client.run(greet)
```

> TIP: You can always check the state of the filesystem on your workers by running `client.run(os.listdir)`

## Development

Create/update a dask-saturn conda environment:

```sh
make conda-update
```

Set environment variables to run dask-saturn with a local atlas server:

```sh
export SATURN_BASE_URL=http://dev.localtest.me:8888/
export SATURN_TOKEN=<JUPYTER_SERVER_SATURN_TOKEN>
```




%prep
%autosetup -n dask-saturn-0.4.3

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-dask-saturn -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.3-1
- Package Spec generated