summaryrefslogtreecommitdiff
path: root/python-dataclass-csv.spec
blob: db586b736df99c1231541a1a13c612dddaa12959 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
%global _empty_manifest_terminate_build 0
Name:		python-dataclass-csv
Version:	1.4.0
Release:	1
Summary:	Map CSV data into dataclasses
License:	BSD license
URL:		https://github.com/dfurtado/dataclass-csv
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/ca/78/caaf00f74a195f84181e88084706f3bb1ea94d7ae428bbb0f47630318a9e/dataclass-csv-1.4.0.tar.gz
BuildArch:	noarch


%description
[![Build Status](https://travis-ci.org/dfurtado/dataclass-csv.svg?branch=master)](https://travis-ci.org/dfurtado/dataclass-csv)
[![pypi](https://img.shields.io/pypi/v/dataclass-csv.svg)](https://pypi.python.org/pypi/dataclass-csv)
[![Downloads](https://pepy.tech/badge/dataclass-csv)](https://pepy.tech/project/dataclass-csv)



# Dataclass CSV

Dataclass CSV makes working with CSV files easier and much better than working with Dicts. It uses Python's Dataclasses to store data of every row on the CSV file and also uses type annotations which enables proper type checking and validation.


## Main features

- Use `dataclasses` instead of dictionaries to represent the rows in the CSV file.
- Take advantage of the `dataclass` properties type annotation. `DataclassReader` use the type annotation to perform validation of the data of the CSV file.
- Automatic type conversion. `DataclassReader` supports `str`, `int`, `float`, `complex`, `datetime` and `bool`, as well as any type whose constructor accepts a string as its single argument.
- Helps you troubleshoot issues with the data in the CSV file. `DataclassReader` will show exactly in which line of the CSV file contain errors.
- Extract only the data you need. It will only parse the properties defined in the `dataclass`
- Familiar syntax. The `DataclassReader` is used almost the same way as the `DictReader` in the standard library.
- It uses `dataclass` features that let you define metadata properties so the data can be parsed exactly the way you want.
- Make the code cleaner. No more extra loops to convert data to the correct type, perform validation, set default values, the `DataclassReader` will do all this for you.
- In additon of the `DataclassReader` the library also provides a `DataclassWriter` which enables creating a CSV file
using a list of instances of a dataclass.


## Installation

```shell
pipenv install dataclass-csv
```

## Getting started

## Using the DataclassReader

First, add the necessary imports:

```python
from dataclasses import dataclass

from dataclass_csv import DataclassReader
```

Assuming that we have a CSV file with the contents below:
```text
firstname,email,age
Elsa,elsa@test.com, 11
Astor,astor@test.com, 7
Edit,edit@test.com, 3
Ella,ella@test.com, 2
```

Let's create a dataclass that will represent a row in the CSV file above:
```python
@dataclass
class User:
    firstname: str
    email: str
    age: int
```

The dataclass `User` has 3 properties, `firstname` and `email` is of type `str` and `age` is of type `int`.

To load and read the contents of the CSV file we do the same thing as if we would be using the `DictReader` from the `csv` module in the Python's standard library. After opening the file we create an instance of the `DataclassReader` passing two arguments. The first is the `file` and the second is the dataclass that we wish to use to represent the data of every row of the CSV file. Like so:

```python
with open(filename) as users_csv:
    reader = DataclassReader(users_csv, User)
    for row in reader:
        print(row)
```

The `DataclassReader` internally uses the `DictReader` from the `csv` module to read the CSV file which means that you can pass the same arguments that you would pass to the `DictReader`. The complete argument list is shown below:

```python
dataclass_csv.DataclassReader(
    f,
    cls,
    fieldnames=None,
    restkey=None,
    restval=None,
    dialect='excel',
    *args,
    **kwds
)
```

All keyword arguments support by `DictReader` are supported by the `DataclassReader`, with the addition of:

`validate_header` - The `DataclassReader` will raise a `ValueError` if the CSV file cointain columns with the same name. This
validation is performed to avoid data being overwritten. To skip this validation set `validate_header=False` when creating a
instance of the `DataclassReader`, see an example below:

```python
reader = DataclassReader(f, User, validate_header=False)
```

If you run this code you should see an output like this:

```python
User(firstname='Elsa', email='elsa@test.com', age=11)
User(firstname='Astor', email='astor@test.com', age=7)
User(firstname='Edit', email='edit@test.com', age=3)
User(firstname='Ella', email='ella@test.com', age=2)
```

### Error handling

One of the advantages of using the `DataclassReader` is that it makes it easy to detect when the type of data in the CSV file is not what your application's model is expecting. And, the `DataclassReader` shows errors that will help to identify the rows with problem in your CSV file.

For example, say we change the contents of the CSV file shown in the **Getting started** section and, modify the `age` of the user Astor, let's change it to a string value:

```text
Astor, astor@test.com, test
```

Remember that in the dataclass `User` the `age` property is annotated with `int`. If we run the code again an exception will be raised with the message below:

```text
dataclass_csv.exceptions.CsvValueError: The field `age` is defined as <class 'int'> but
received a value of type <class 'str'>. [CSV Line number: 3]
```

Note that apart from telling what the error was, the `DataclassReader` will also show which line of the CSV file contain the data with errors.

### Default values

The `DataclassReader` also handles properties with default values. Let's modify the dataclass `User` and add a default value for the field `email`:

```python
from dataclasses import dataclass


@dataclass
class User:
    firstname: str
    email: str = 'Not specified'
    age: int
```

And we modify the CSV file and remove the email for the user Astor:

```python
Astor,, 7
```

If we run the code we should see the output below:

```text
User(firstname='Elsa', email='elsa@test.com', age=11)
User(firstname='Astor', email='Not specified', age=7)
User(firstname='Edit', email='edit@test.com', age=3)
User(firstname='Ella', email='ella@test.com', age=2)
```

Note that now the object for the user Astor have the default value `Not specified` assigned to the email property.

Default values can also be set using `dataclasses.field` like so:

```python
from dataclasses import dataclass, field


@dataclass
class User:
    firstname: str
    email: str = field(default='Not specified')
    age: int
```

### Mapping dataclass fields to columns

The mapping between a dataclass property and a column in the CSV file will be done automatically if the names match, however, there are situations that the name of the header for a column is different. We can easily tell the `DataclassReader` how the mapping should be done using the method `map`. Assuming that we have a CSV file with the contents below:

```text
First Name,email,age
Elsa,elsa@test.com, 11
```

Note that now, the column is called **First Name** and not **firstname**

And we can use the method `map`, like so:

```python
reader = DataclassReader(users_csv, User)
reader.map('First name').to('firstname')
```

Now the DataclassReader will know how to extract the data from the column **First Name** and add it to the to dataclass property **firstname**

### Supported type annotation

At the moment the `DataclassReader` support `int`, `str`, `float`, `complex`, `datetime`, and `bool`. When defining a `datetime` property, it is necessary to use the `dateformat` decorator, for example:

```python
from dataclasses import dataclass
from datetime import datetime

from dataclass_csv import DataclassReader, dateformat


@dataclass
@dateformat('%Y/%m/%d')
class User:
    name: str
    email: str
    birthday: datetime


if __name__ == '__main__':

    with open('users.csv') as f:
        reader = DataclassReader(f, User)
        for row in reader:
            print(row)
```

Assuming that the CSV file have the following contents:

```text
name,email,birthday
Edit,edit@test.com,2018/11/23
```

The output would look like this:

```text
User(name='Edit', email='edit@test.com', birthday=datetime.datetime(2018, 11, 23, 0, 0))
```

### Fields metadata

It is important to note that the `dateformat` decorator will define the date format that will be used to parse date to all properties
in the class. Now there are situations where the data in a CSV file contains two or more columns with date values in different formats. It is possible
to set a format specific for every property using the `dataclasses.field`. Let's say that we now have a CSV file with the following contents:

```text
name,email,birthday, create_date
Edit,edit@test.com,2018/11/23,2018/11/23 10:43
```

As you can see the `create_date` contains time information as well.

The `dataclass` User can be defined like this:

```python
from dataclasses import dataclass, field
from datetime import datetime

from dataclass_csv import DataclassReader, dateformat


@dataclass
@dateformat('%Y/%m/%d')
class User:
    name: str
    email: str
    birthday: datetime
    create_date: datetime = field(metadata={'dateformat': '%Y/%m/%d %H:%M'})
```

Note that the format for the `birthday` field was not speficied using the `field` metadata. In this case the format specified in the `dateformat`
decorator will be used.

### Handling values with empty spaces

When defining a property of type `str` in the `dataclass`, the `DataclassReader` will treat values with only white spaces as invalid. To change this
behavior, there is a decorator called `@accept_whitespaces`. When decorating the class with the `@accept_whitespaces` all the properties in the class
will accept values with only white spaces.

For example:

```python
from dataclass_csv import DataclassReader, accept_whitespaces

@accept_whitespaces
@dataclass
class User:
    name: str
    email: str
    birthday: datetime
    created_at: datetime
```

If you need a specific field to accept white spaces, you can set the property `accept_whitespaces` in the field's metadata, like so:

```python
@dataclass
class User:
    name: str
    email: str = field(metadata={'accept_whitespaces': True})
    birthday: datetime
    created_at: datetime
```

### User-defined types

You can use any type for a field as long as its constructor accepts a string:

```python
class SSN:
    def __init__(self, val):
        if re.match(r"\d{9}", val):
            self.val = f"{val[0:3]}-{val[3:5]}-{val[5:9]}"
        elif re.match(r"\d{3}-\d{2}-\d{4}", val):
            self.val = val
        else:
            raise ValueError(f"Invalid SSN: {val!r}")


@dataclasses.dataclass
class User:
    name: str
    ssn: SSN
```


## Using the DataclassWriter

Reading a CSV file using the `DataclassReader` is great and gives us the type-safety of Python's dataclasses and type annotation, however, there are situations where we would like to use dataclasses for creating CSV files, that's where the `DataclassWriter` comes in handy.

Using the `DataclassWriter` is quite simple. Given that we have a dataclass `User`:

```python
from dataclasses import dataclass


@dataclass
class User:
    firstname: str
    lastname: str
    age: int
```

And in your program we have a list of users:

```python

users = [
    User(firstname="John", lastname="Smith", age=40),
    User(firstname="Daniel", lastname="Nilsson", age=10),
    User(firstname="Ella", "Fralla", age=4)
]
```

In order to create a CSV using the `DataclassWriter` import it from `dataclass_csv`:

```python
from dataclass_csv import DataclassWriter
```

Initialize it with the required arguments and call the method `write`:

```python
with open("users.csv", "w") as f:
    w = DataclassWriter(f, users, User)
    w.write()
```

That's it! Let's break down the snippet above.

First, we open a file called `user.csv` for writing. After that, an instance of the `DataclassWriter` is created. To create a `DataclassWriter` we need to pass the `file`, the list of `User` instances, and lastly, the type, which in this case is `User`.

The type is required since the writer uses it when trying to figure out the CSV header. By default, it will use the names of the
properties defined in the dataclass, in the case of the dataclass `User` the title of each column
will be `firstname`, `lastname` and `age`.

See below the CSV created out of a list of `User`:

```text
firstname,lastname,age
John,Smith,40
Daniel,Nilsson,10
Ella,Fralla,4
```

The `DataclassWriter` also takes a `**fmtparams` which accepts the same parameters as the `csv.writer`, for more
information see: https://docs.python.org/3/library/csv.html#csv-fmt-params

Now, there are situations where we don't want to write the CSV header. In this case, the method `write` of
the `DataclassWriter` accepts an extra argument, called `skip_header`. The default value is `False` and when set to
`True` it will skip the header.

#### Modifying the CSV header

As previously mentioned the `DataclassWriter` uses the names of the properties defined in the dataclass as the CSV header titles, however,
depending on your use case it makes sense to change it. The `DataclassWriter` has a `map` method just for this purpose.

 Using the `User` dataclass with the properties `firstname`, `lastname` and `age`. The snippet below shows how to change `firstname` to `First name` and `lastname` to `Last name`:

 ```python
 with open("users.csv", "w") as f:
    w = DataclassWriter(f, users, User)

    # Add mappings for firstname and lastname
    w.map("firstname").to("First name")
    w.map("lastname").to("Last name")

    w.write()
 ```

 The CSV output of the snippet above will be:

```text
First name,Last name,age
John,Smith,40
Daniel,Nilsson,10
Ella,Fralla,4
```

## Copyright and License

Copyright (c) 2018 Daniel Furtado. Code released under BSD 3-clause license

## Credits

This package was created with [Cookiecutter](https://github.com/audreyr/cookiecutter) and the [audreyr/cookiecutter-pypackage](https://github.com/audreyr/cookiecutter-pypackage) project template.


# History

### 0.1.0 (2018-11-25)

* First release on PyPI.

### 0.1.1 (2018-11-25)

* Documentation fixes.

### 0.1.2 (2018-11-25)

* Documentation fixes.

### 0.1.3 (2018-11-26)

* Bug fixes
* Removed the requirement of setting the dataclass init to `True`

### 0.1.5 (2018-11-29)

* Support for parsing datetime values.
* Better handling when default values are set to `None`

### 0.1.6 (2018-12-01)

* Added support for reader default values from the default property of the `dataclasses.field`.
* Added support for allowing string values with only white spaces in a class level using the `@accept_whitespaces` decorator or through the `dataclasses.field` metadata.
* Added support for specifying date format using the `dataclasses.field` metadata.

### 0.1.7 (2018-12-01)

* Added support for default values from `default_factory` in the field's metadata. This allows adding mutable default values to the dataclass properties.

### 1.0.0 (2018-12-16)

* When a data does not pass validation it shows the line number in the CSV file where the data contain errors.
* Improved error handling.
* Changed the usage of the `@accept_whitespaces` decorator.
* Updated documentation.

### 1.0.1 (2019-01-29)

* Fixed issue when parsing headers on a CSV file with trailing white spaces.

### 1.1.0 (2019-02-17)

* Added support for boolean values.
* Docstrings

### 1.1.1 (2019-02-17)

* Documentation fixes.

### 1.1.2 (2019-02-17)

* Documentation fixes.

### 1.1.3 (2020-03-01)

* Handle properties with init set to False
* Handle Option type annotation

### 1.2.0 (2021-03-02)

* Introduction of a DataclassWriter
* Added type hinting to external API
* Documentation updates
* Bug fixes

## 1.3.0 (2021-04-10)

* Included stub files
* check if the CSV file has duplicated header values
* Fixed issues #22 and #33
* code cleanup

## 1.4.0 (2021-12-13)

* Bug fixes
* Support for date types



%package -n python3-dataclass-csv
Summary:	Map CSV data into dataclasses
Provides:	python-dataclass-csv
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-dataclass-csv
[![Build Status](https://travis-ci.org/dfurtado/dataclass-csv.svg?branch=master)](https://travis-ci.org/dfurtado/dataclass-csv)
[![pypi](https://img.shields.io/pypi/v/dataclass-csv.svg)](https://pypi.python.org/pypi/dataclass-csv)
[![Downloads](https://pepy.tech/badge/dataclass-csv)](https://pepy.tech/project/dataclass-csv)



# Dataclass CSV

Dataclass CSV makes working with CSV files easier and much better than working with Dicts. It uses Python's Dataclasses to store data of every row on the CSV file and also uses type annotations which enables proper type checking and validation.


## Main features

- Use `dataclasses` instead of dictionaries to represent the rows in the CSV file.
- Take advantage of the `dataclass` properties type annotation. `DataclassReader` use the type annotation to perform validation of the data of the CSV file.
- Automatic type conversion. `DataclassReader` supports `str`, `int`, `float`, `complex`, `datetime` and `bool`, as well as any type whose constructor accepts a string as its single argument.
- Helps you troubleshoot issues with the data in the CSV file. `DataclassReader` will show exactly in which line of the CSV file contain errors.
- Extract only the data you need. It will only parse the properties defined in the `dataclass`
- Familiar syntax. The `DataclassReader` is used almost the same way as the `DictReader` in the standard library.
- It uses `dataclass` features that let you define metadata properties so the data can be parsed exactly the way you want.
- Make the code cleaner. No more extra loops to convert data to the correct type, perform validation, set default values, the `DataclassReader` will do all this for you.
- In additon of the `DataclassReader` the library also provides a `DataclassWriter` which enables creating a CSV file
using a list of instances of a dataclass.


## Installation

```shell
pipenv install dataclass-csv
```

## Getting started

## Using the DataclassReader

First, add the necessary imports:

```python
from dataclasses import dataclass

from dataclass_csv import DataclassReader
```

Assuming that we have a CSV file with the contents below:
```text
firstname,email,age
Elsa,elsa@test.com, 11
Astor,astor@test.com, 7
Edit,edit@test.com, 3
Ella,ella@test.com, 2
```

Let's create a dataclass that will represent a row in the CSV file above:
```python
@dataclass
class User:
    firstname: str
    email: str
    age: int
```

The dataclass `User` has 3 properties, `firstname` and `email` is of type `str` and `age` is of type `int`.

To load and read the contents of the CSV file we do the same thing as if we would be using the `DictReader` from the `csv` module in the Python's standard library. After opening the file we create an instance of the `DataclassReader` passing two arguments. The first is the `file` and the second is the dataclass that we wish to use to represent the data of every row of the CSV file. Like so:

```python
with open(filename) as users_csv:
    reader = DataclassReader(users_csv, User)
    for row in reader:
        print(row)
```

The `DataclassReader` internally uses the `DictReader` from the `csv` module to read the CSV file which means that you can pass the same arguments that you would pass to the `DictReader`. The complete argument list is shown below:

```python
dataclass_csv.DataclassReader(
    f,
    cls,
    fieldnames=None,
    restkey=None,
    restval=None,
    dialect='excel',
    *args,
    **kwds
)
```

All keyword arguments support by `DictReader` are supported by the `DataclassReader`, with the addition of:

`validate_header` - The `DataclassReader` will raise a `ValueError` if the CSV file cointain columns with the same name. This
validation is performed to avoid data being overwritten. To skip this validation set `validate_header=False` when creating a
instance of the `DataclassReader`, see an example below:

```python
reader = DataclassReader(f, User, validate_header=False)
```

If you run this code you should see an output like this:

```python
User(firstname='Elsa', email='elsa@test.com', age=11)
User(firstname='Astor', email='astor@test.com', age=7)
User(firstname='Edit', email='edit@test.com', age=3)
User(firstname='Ella', email='ella@test.com', age=2)
```

### Error handling

One of the advantages of using the `DataclassReader` is that it makes it easy to detect when the type of data in the CSV file is not what your application's model is expecting. And, the `DataclassReader` shows errors that will help to identify the rows with problem in your CSV file.

For example, say we change the contents of the CSV file shown in the **Getting started** section and, modify the `age` of the user Astor, let's change it to a string value:

```text
Astor, astor@test.com, test
```

Remember that in the dataclass `User` the `age` property is annotated with `int`. If we run the code again an exception will be raised with the message below:

```text
dataclass_csv.exceptions.CsvValueError: The field `age` is defined as <class 'int'> but
received a value of type <class 'str'>. [CSV Line number: 3]
```

Note that apart from telling what the error was, the `DataclassReader` will also show which line of the CSV file contain the data with errors.

### Default values

The `DataclassReader` also handles properties with default values. Let's modify the dataclass `User` and add a default value for the field `email`:

```python
from dataclasses import dataclass


@dataclass
class User:
    firstname: str
    email: str = 'Not specified'
    age: int
```

And we modify the CSV file and remove the email for the user Astor:

```python
Astor,, 7
```

If we run the code we should see the output below:

```text
User(firstname='Elsa', email='elsa@test.com', age=11)
User(firstname='Astor', email='Not specified', age=7)
User(firstname='Edit', email='edit@test.com', age=3)
User(firstname='Ella', email='ella@test.com', age=2)
```

Note that now the object for the user Astor have the default value `Not specified` assigned to the email property.

Default values can also be set using `dataclasses.field` like so:

```python
from dataclasses import dataclass, field


@dataclass
class User:
    firstname: str
    email: str = field(default='Not specified')
    age: int
```

### Mapping dataclass fields to columns

The mapping between a dataclass property and a column in the CSV file will be done automatically if the names match, however, there are situations that the name of the header for a column is different. We can easily tell the `DataclassReader` how the mapping should be done using the method `map`. Assuming that we have a CSV file with the contents below:

```text
First Name,email,age
Elsa,elsa@test.com, 11
```

Note that now, the column is called **First Name** and not **firstname**

And we can use the method `map`, like so:

```python
reader = DataclassReader(users_csv, User)
reader.map('First name').to('firstname')
```

Now the DataclassReader will know how to extract the data from the column **First Name** and add it to the to dataclass property **firstname**

### Supported type annotation

At the moment the `DataclassReader` support `int`, `str`, `float`, `complex`, `datetime`, and `bool`. When defining a `datetime` property, it is necessary to use the `dateformat` decorator, for example:

```python
from dataclasses import dataclass
from datetime import datetime

from dataclass_csv import DataclassReader, dateformat


@dataclass
@dateformat('%Y/%m/%d')
class User:
    name: str
    email: str
    birthday: datetime


if __name__ == '__main__':

    with open('users.csv') as f:
        reader = DataclassReader(f, User)
        for row in reader:
            print(row)
```

Assuming that the CSV file have the following contents:

```text
name,email,birthday
Edit,edit@test.com,2018/11/23
```

The output would look like this:

```text
User(name='Edit', email='edit@test.com', birthday=datetime.datetime(2018, 11, 23, 0, 0))
```

### Fields metadata

It is important to note that the `dateformat` decorator will define the date format that will be used to parse date to all properties
in the class. Now there are situations where the data in a CSV file contains two or more columns with date values in different formats. It is possible
to set a format specific for every property using the `dataclasses.field`. Let's say that we now have a CSV file with the following contents:

```text
name,email,birthday, create_date
Edit,edit@test.com,2018/11/23,2018/11/23 10:43
```

As you can see the `create_date` contains time information as well.

The `dataclass` User can be defined like this:

```python
from dataclasses import dataclass, field
from datetime import datetime

from dataclass_csv import DataclassReader, dateformat


@dataclass
@dateformat('%Y/%m/%d')
class User:
    name: str
    email: str
    birthday: datetime
    create_date: datetime = field(metadata={'dateformat': '%Y/%m/%d %H:%M'})
```

Note that the format for the `birthday` field was not speficied using the `field` metadata. In this case the format specified in the `dateformat`
decorator will be used.

### Handling values with empty spaces

When defining a property of type `str` in the `dataclass`, the `DataclassReader` will treat values with only white spaces as invalid. To change this
behavior, there is a decorator called `@accept_whitespaces`. When decorating the class with the `@accept_whitespaces` all the properties in the class
will accept values with only white spaces.

For example:

```python
from dataclass_csv import DataclassReader, accept_whitespaces

@accept_whitespaces
@dataclass
class User:
    name: str
    email: str
    birthday: datetime
    created_at: datetime
```

If you need a specific field to accept white spaces, you can set the property `accept_whitespaces` in the field's metadata, like so:

```python
@dataclass
class User:
    name: str
    email: str = field(metadata={'accept_whitespaces': True})
    birthday: datetime
    created_at: datetime
```

### User-defined types

You can use any type for a field as long as its constructor accepts a string:

```python
class SSN:
    def __init__(self, val):
        if re.match(r"\d{9}", val):
            self.val = f"{val[0:3]}-{val[3:5]}-{val[5:9]}"
        elif re.match(r"\d{3}-\d{2}-\d{4}", val):
            self.val = val
        else:
            raise ValueError(f"Invalid SSN: {val!r}")


@dataclasses.dataclass
class User:
    name: str
    ssn: SSN
```


## Using the DataclassWriter

Reading a CSV file using the `DataclassReader` is great and gives us the type-safety of Python's dataclasses and type annotation, however, there are situations where we would like to use dataclasses for creating CSV files, that's where the `DataclassWriter` comes in handy.

Using the `DataclassWriter` is quite simple. Given that we have a dataclass `User`:

```python
from dataclasses import dataclass


@dataclass
class User:
    firstname: str
    lastname: str
    age: int
```

And in your program we have a list of users:

```python

users = [
    User(firstname="John", lastname="Smith", age=40),
    User(firstname="Daniel", lastname="Nilsson", age=10),
    User(firstname="Ella", "Fralla", age=4)
]
```

In order to create a CSV using the `DataclassWriter` import it from `dataclass_csv`:

```python
from dataclass_csv import DataclassWriter
```

Initialize it with the required arguments and call the method `write`:

```python
with open("users.csv", "w") as f:
    w = DataclassWriter(f, users, User)
    w.write()
```

That's it! Let's break down the snippet above.

First, we open a file called `user.csv` for writing. After that, an instance of the `DataclassWriter` is created. To create a `DataclassWriter` we need to pass the `file`, the list of `User` instances, and lastly, the type, which in this case is `User`.

The type is required since the writer uses it when trying to figure out the CSV header. By default, it will use the names of the
properties defined in the dataclass, in the case of the dataclass `User` the title of each column
will be `firstname`, `lastname` and `age`.

See below the CSV created out of a list of `User`:

```text
firstname,lastname,age
John,Smith,40
Daniel,Nilsson,10
Ella,Fralla,4
```

The `DataclassWriter` also takes a `**fmtparams` which accepts the same parameters as the `csv.writer`, for more
information see: https://docs.python.org/3/library/csv.html#csv-fmt-params

Now, there are situations where we don't want to write the CSV header. In this case, the method `write` of
the `DataclassWriter` accepts an extra argument, called `skip_header`. The default value is `False` and when set to
`True` it will skip the header.

#### Modifying the CSV header

As previously mentioned the `DataclassWriter` uses the names of the properties defined in the dataclass as the CSV header titles, however,
depending on your use case it makes sense to change it. The `DataclassWriter` has a `map` method just for this purpose.

 Using the `User` dataclass with the properties `firstname`, `lastname` and `age`. The snippet below shows how to change `firstname` to `First name` and `lastname` to `Last name`:

 ```python
 with open("users.csv", "w") as f:
    w = DataclassWriter(f, users, User)

    # Add mappings for firstname and lastname
    w.map("firstname").to("First name")
    w.map("lastname").to("Last name")

    w.write()
 ```

 The CSV output of the snippet above will be:

```text
First name,Last name,age
John,Smith,40
Daniel,Nilsson,10
Ella,Fralla,4
```

## Copyright and License

Copyright (c) 2018 Daniel Furtado. Code released under BSD 3-clause license

## Credits

This package was created with [Cookiecutter](https://github.com/audreyr/cookiecutter) and the [audreyr/cookiecutter-pypackage](https://github.com/audreyr/cookiecutter-pypackage) project template.


# History

### 0.1.0 (2018-11-25)

* First release on PyPI.

### 0.1.1 (2018-11-25)

* Documentation fixes.

### 0.1.2 (2018-11-25)

* Documentation fixes.

### 0.1.3 (2018-11-26)

* Bug fixes
* Removed the requirement of setting the dataclass init to `True`

### 0.1.5 (2018-11-29)

* Support for parsing datetime values.
* Better handling when default values are set to `None`

### 0.1.6 (2018-12-01)

* Added support for reader default values from the default property of the `dataclasses.field`.
* Added support for allowing string values with only white spaces in a class level using the `@accept_whitespaces` decorator or through the `dataclasses.field` metadata.
* Added support for specifying date format using the `dataclasses.field` metadata.

### 0.1.7 (2018-12-01)

* Added support for default values from `default_factory` in the field's metadata. This allows adding mutable default values to the dataclass properties.

### 1.0.0 (2018-12-16)

* When a data does not pass validation it shows the line number in the CSV file where the data contain errors.
* Improved error handling.
* Changed the usage of the `@accept_whitespaces` decorator.
* Updated documentation.

### 1.0.1 (2019-01-29)

* Fixed issue when parsing headers on a CSV file with trailing white spaces.

### 1.1.0 (2019-02-17)

* Added support for boolean values.
* Docstrings

### 1.1.1 (2019-02-17)

* Documentation fixes.

### 1.1.2 (2019-02-17)

* Documentation fixes.

### 1.1.3 (2020-03-01)

* Handle properties with init set to False
* Handle Option type annotation

### 1.2.0 (2021-03-02)

* Introduction of a DataclassWriter
* Added type hinting to external API
* Documentation updates
* Bug fixes

## 1.3.0 (2021-04-10)

* Included stub files
* check if the CSV file has duplicated header values
* Fixed issues #22 and #33
* code cleanup

## 1.4.0 (2021-12-13)

* Bug fixes
* Support for date types



%package help
Summary:	Development documents and examples for dataclass-csv
Provides:	python3-dataclass-csv-doc
%description help
[![Build Status](https://travis-ci.org/dfurtado/dataclass-csv.svg?branch=master)](https://travis-ci.org/dfurtado/dataclass-csv)
[![pypi](https://img.shields.io/pypi/v/dataclass-csv.svg)](https://pypi.python.org/pypi/dataclass-csv)
[![Downloads](https://pepy.tech/badge/dataclass-csv)](https://pepy.tech/project/dataclass-csv)



# Dataclass CSV

Dataclass CSV makes working with CSV files easier and much better than working with Dicts. It uses Python's Dataclasses to store data of every row on the CSV file and also uses type annotations which enables proper type checking and validation.


## Main features

- Use `dataclasses` instead of dictionaries to represent the rows in the CSV file.
- Take advantage of the `dataclass` properties type annotation. `DataclassReader` use the type annotation to perform validation of the data of the CSV file.
- Automatic type conversion. `DataclassReader` supports `str`, `int`, `float`, `complex`, `datetime` and `bool`, as well as any type whose constructor accepts a string as its single argument.
- Helps you troubleshoot issues with the data in the CSV file. `DataclassReader` will show exactly in which line of the CSV file contain errors.
- Extract only the data you need. It will only parse the properties defined in the `dataclass`
- Familiar syntax. The `DataclassReader` is used almost the same way as the `DictReader` in the standard library.
- It uses `dataclass` features that let you define metadata properties so the data can be parsed exactly the way you want.
- Make the code cleaner. No more extra loops to convert data to the correct type, perform validation, set default values, the `DataclassReader` will do all this for you.
- In additon of the `DataclassReader` the library also provides a `DataclassWriter` which enables creating a CSV file
using a list of instances of a dataclass.


## Installation

```shell
pipenv install dataclass-csv
```

## Getting started

## Using the DataclassReader

First, add the necessary imports:

```python
from dataclasses import dataclass

from dataclass_csv import DataclassReader
```

Assuming that we have a CSV file with the contents below:
```text
firstname,email,age
Elsa,elsa@test.com, 11
Astor,astor@test.com, 7
Edit,edit@test.com, 3
Ella,ella@test.com, 2
```

Let's create a dataclass that will represent a row in the CSV file above:
```python
@dataclass
class User:
    firstname: str
    email: str
    age: int
```

The dataclass `User` has 3 properties, `firstname` and `email` is of type `str` and `age` is of type `int`.

To load and read the contents of the CSV file we do the same thing as if we would be using the `DictReader` from the `csv` module in the Python's standard library. After opening the file we create an instance of the `DataclassReader` passing two arguments. The first is the `file` and the second is the dataclass that we wish to use to represent the data of every row of the CSV file. Like so:

```python
with open(filename) as users_csv:
    reader = DataclassReader(users_csv, User)
    for row in reader:
        print(row)
```

The `DataclassReader` internally uses the `DictReader` from the `csv` module to read the CSV file which means that you can pass the same arguments that you would pass to the `DictReader`. The complete argument list is shown below:

```python
dataclass_csv.DataclassReader(
    f,
    cls,
    fieldnames=None,
    restkey=None,
    restval=None,
    dialect='excel',
    *args,
    **kwds
)
```

All keyword arguments support by `DictReader` are supported by the `DataclassReader`, with the addition of:

`validate_header` - The `DataclassReader` will raise a `ValueError` if the CSV file cointain columns with the same name. This
validation is performed to avoid data being overwritten. To skip this validation set `validate_header=False` when creating a
instance of the `DataclassReader`, see an example below:

```python
reader = DataclassReader(f, User, validate_header=False)
```

If you run this code you should see an output like this:

```python
User(firstname='Elsa', email='elsa@test.com', age=11)
User(firstname='Astor', email='astor@test.com', age=7)
User(firstname='Edit', email='edit@test.com', age=3)
User(firstname='Ella', email='ella@test.com', age=2)
```

### Error handling

One of the advantages of using the `DataclassReader` is that it makes it easy to detect when the type of data in the CSV file is not what your application's model is expecting. And, the `DataclassReader` shows errors that will help to identify the rows with problem in your CSV file.

For example, say we change the contents of the CSV file shown in the **Getting started** section and, modify the `age` of the user Astor, let's change it to a string value:

```text
Astor, astor@test.com, test
```

Remember that in the dataclass `User` the `age` property is annotated with `int`. If we run the code again an exception will be raised with the message below:

```text
dataclass_csv.exceptions.CsvValueError: The field `age` is defined as <class 'int'> but
received a value of type <class 'str'>. [CSV Line number: 3]
```

Note that apart from telling what the error was, the `DataclassReader` will also show which line of the CSV file contain the data with errors.

### Default values

The `DataclassReader` also handles properties with default values. Let's modify the dataclass `User` and add a default value for the field `email`:

```python
from dataclasses import dataclass


@dataclass
class User:
    firstname: str
    email: str = 'Not specified'
    age: int
```

And we modify the CSV file and remove the email for the user Astor:

```python
Astor,, 7
```

If we run the code we should see the output below:

```text
User(firstname='Elsa', email='elsa@test.com', age=11)
User(firstname='Astor', email='Not specified', age=7)
User(firstname='Edit', email='edit@test.com', age=3)
User(firstname='Ella', email='ella@test.com', age=2)
```

Note that now the object for the user Astor have the default value `Not specified` assigned to the email property.

Default values can also be set using `dataclasses.field` like so:

```python
from dataclasses import dataclass, field


@dataclass
class User:
    firstname: str
    email: str = field(default='Not specified')
    age: int
```

### Mapping dataclass fields to columns

The mapping between a dataclass property and a column in the CSV file will be done automatically if the names match, however, there are situations that the name of the header for a column is different. We can easily tell the `DataclassReader` how the mapping should be done using the method `map`. Assuming that we have a CSV file with the contents below:

```text
First Name,email,age
Elsa,elsa@test.com, 11
```

Note that now, the column is called **First Name** and not **firstname**

And we can use the method `map`, like so:

```python
reader = DataclassReader(users_csv, User)
reader.map('First name').to('firstname')
```

Now the DataclassReader will know how to extract the data from the column **First Name** and add it to the to dataclass property **firstname**

### Supported type annotation

At the moment the `DataclassReader` support `int`, `str`, `float`, `complex`, `datetime`, and `bool`. When defining a `datetime` property, it is necessary to use the `dateformat` decorator, for example:

```python
from dataclasses import dataclass
from datetime import datetime

from dataclass_csv import DataclassReader, dateformat


@dataclass
@dateformat('%Y/%m/%d')
class User:
    name: str
    email: str
    birthday: datetime


if __name__ == '__main__':

    with open('users.csv') as f:
        reader = DataclassReader(f, User)
        for row in reader:
            print(row)
```

Assuming that the CSV file have the following contents:

```text
name,email,birthday
Edit,edit@test.com,2018/11/23
```

The output would look like this:

```text
User(name='Edit', email='edit@test.com', birthday=datetime.datetime(2018, 11, 23, 0, 0))
```

### Fields metadata

It is important to note that the `dateformat` decorator will define the date format that will be used to parse date to all properties
in the class. Now there are situations where the data in a CSV file contains two or more columns with date values in different formats. It is possible
to set a format specific for every property using the `dataclasses.field`. Let's say that we now have a CSV file with the following contents:

```text
name,email,birthday, create_date
Edit,edit@test.com,2018/11/23,2018/11/23 10:43
```

As you can see the `create_date` contains time information as well.

The `dataclass` User can be defined like this:

```python
from dataclasses import dataclass, field
from datetime import datetime

from dataclass_csv import DataclassReader, dateformat


@dataclass
@dateformat('%Y/%m/%d')
class User:
    name: str
    email: str
    birthday: datetime
    create_date: datetime = field(metadata={'dateformat': '%Y/%m/%d %H:%M'})
```

Note that the format for the `birthday` field was not speficied using the `field` metadata. In this case the format specified in the `dateformat`
decorator will be used.

### Handling values with empty spaces

When defining a property of type `str` in the `dataclass`, the `DataclassReader` will treat values with only white spaces as invalid. To change this
behavior, there is a decorator called `@accept_whitespaces`. When decorating the class with the `@accept_whitespaces` all the properties in the class
will accept values with only white spaces.

For example:

```python
from dataclass_csv import DataclassReader, accept_whitespaces

@accept_whitespaces
@dataclass
class User:
    name: str
    email: str
    birthday: datetime
    created_at: datetime
```

If you need a specific field to accept white spaces, you can set the property `accept_whitespaces` in the field's metadata, like so:

```python
@dataclass
class User:
    name: str
    email: str = field(metadata={'accept_whitespaces': True})
    birthday: datetime
    created_at: datetime
```

### User-defined types

You can use any type for a field as long as its constructor accepts a string:

```python
class SSN:
    def __init__(self, val):
        if re.match(r"\d{9}", val):
            self.val = f"{val[0:3]}-{val[3:5]}-{val[5:9]}"
        elif re.match(r"\d{3}-\d{2}-\d{4}", val):
            self.val = val
        else:
            raise ValueError(f"Invalid SSN: {val!r}")


@dataclasses.dataclass
class User:
    name: str
    ssn: SSN
```


## Using the DataclassWriter

Reading a CSV file using the `DataclassReader` is great and gives us the type-safety of Python's dataclasses and type annotation, however, there are situations where we would like to use dataclasses for creating CSV files, that's where the `DataclassWriter` comes in handy.

Using the `DataclassWriter` is quite simple. Given that we have a dataclass `User`:

```python
from dataclasses import dataclass


@dataclass
class User:
    firstname: str
    lastname: str
    age: int
```

And in your program we have a list of users:

```python

users = [
    User(firstname="John", lastname="Smith", age=40),
    User(firstname="Daniel", lastname="Nilsson", age=10),
    User(firstname="Ella", "Fralla", age=4)
]
```

In order to create a CSV using the `DataclassWriter` import it from `dataclass_csv`:

```python
from dataclass_csv import DataclassWriter
```

Initialize it with the required arguments and call the method `write`:

```python
with open("users.csv", "w") as f:
    w = DataclassWriter(f, users, User)
    w.write()
```

That's it! Let's break down the snippet above.

First, we open a file called `user.csv` for writing. After that, an instance of the `DataclassWriter` is created. To create a `DataclassWriter` we need to pass the `file`, the list of `User` instances, and lastly, the type, which in this case is `User`.

The type is required since the writer uses it when trying to figure out the CSV header. By default, it will use the names of the
properties defined in the dataclass, in the case of the dataclass `User` the title of each column
will be `firstname`, `lastname` and `age`.

See below the CSV created out of a list of `User`:

```text
firstname,lastname,age
John,Smith,40
Daniel,Nilsson,10
Ella,Fralla,4
```

The `DataclassWriter` also takes a `**fmtparams` which accepts the same parameters as the `csv.writer`, for more
information see: https://docs.python.org/3/library/csv.html#csv-fmt-params

Now, there are situations where we don't want to write the CSV header. In this case, the method `write` of
the `DataclassWriter` accepts an extra argument, called `skip_header`. The default value is `False` and when set to
`True` it will skip the header.

#### Modifying the CSV header

As previously mentioned the `DataclassWriter` uses the names of the properties defined in the dataclass as the CSV header titles, however,
depending on your use case it makes sense to change it. The `DataclassWriter` has a `map` method just for this purpose.

 Using the `User` dataclass with the properties `firstname`, `lastname` and `age`. The snippet below shows how to change `firstname` to `First name` and `lastname` to `Last name`:

 ```python
 with open("users.csv", "w") as f:
    w = DataclassWriter(f, users, User)

    # Add mappings for firstname and lastname
    w.map("firstname").to("First name")
    w.map("lastname").to("Last name")

    w.write()
 ```

 The CSV output of the snippet above will be:

```text
First name,Last name,age
John,Smith,40
Daniel,Nilsson,10
Ella,Fralla,4
```

## Copyright and License

Copyright (c) 2018 Daniel Furtado. Code released under BSD 3-clause license

## Credits

This package was created with [Cookiecutter](https://github.com/audreyr/cookiecutter) and the [audreyr/cookiecutter-pypackage](https://github.com/audreyr/cookiecutter-pypackage) project template.


# History

### 0.1.0 (2018-11-25)

* First release on PyPI.

### 0.1.1 (2018-11-25)

* Documentation fixes.

### 0.1.2 (2018-11-25)

* Documentation fixes.

### 0.1.3 (2018-11-26)

* Bug fixes
* Removed the requirement of setting the dataclass init to `True`

### 0.1.5 (2018-11-29)

* Support for parsing datetime values.
* Better handling when default values are set to `None`

### 0.1.6 (2018-12-01)

* Added support for reader default values from the default property of the `dataclasses.field`.
* Added support for allowing string values with only white spaces in a class level using the `@accept_whitespaces` decorator or through the `dataclasses.field` metadata.
* Added support for specifying date format using the `dataclasses.field` metadata.

### 0.1.7 (2018-12-01)

* Added support for default values from `default_factory` in the field's metadata. This allows adding mutable default values to the dataclass properties.

### 1.0.0 (2018-12-16)

* When a data does not pass validation it shows the line number in the CSV file where the data contain errors.
* Improved error handling.
* Changed the usage of the `@accept_whitespaces` decorator.
* Updated documentation.

### 1.0.1 (2019-01-29)

* Fixed issue when parsing headers on a CSV file with trailing white spaces.

### 1.1.0 (2019-02-17)

* Added support for boolean values.
* Docstrings

### 1.1.1 (2019-02-17)

* Documentation fixes.

### 1.1.2 (2019-02-17)

* Documentation fixes.

### 1.1.3 (2020-03-01)

* Handle properties with init set to False
* Handle Option type annotation

### 1.2.0 (2021-03-02)

* Introduction of a DataclassWriter
* Added type hinting to external API
* Documentation updates
* Bug fixes

## 1.3.0 (2021-04-10)

* Included stub files
* check if the CSV file has duplicated header values
* Fixed issues #22 and #33
* code cleanup

## 1.4.0 (2021-12-13)

* Bug fixes
* Support for date types



%prep
%autosetup -n dataclass-csv-1.4.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-dataclass-csv -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Apr 25 2023 Python_Bot <Python_Bot@openeuler.org> - 1.4.0-1
- Package Spec generated