diff options
| author | CoprDistGit <infra@openeuler.org> | 2023-04-10 13:22:05 +0000 |
|---|---|---|
| committer | CoprDistGit <infra@openeuler.org> | 2023-04-10 13:22:05 +0000 |
| commit | 1bea5b9b72b8229ab3e20826395179e0e990fa30 (patch) | |
| tree | de4ba78b0e4bf7362f47ec07286158c780eb232d | |
| parent | 31b846e6e897218ec77000ce276e438a597eb363 (diff) | |
automatic import of python-datasketch
| -rw-r--r-- | .gitignore | 1 | ||||
| -rw-r--r-- | python-datasketch.spec | 179 | ||||
| -rw-r--r-- | sources | 1 |
3 files changed, 181 insertions, 0 deletions
@@ -0,0 +1 @@ +/datasketch-1.5.9.tar.gz diff --git a/python-datasketch.spec b/python-datasketch.spec new file mode 100644 index 0000000..a3f19ca --- /dev/null +++ b/python-datasketch.spec @@ -0,0 +1,179 @@ +%global _empty_manifest_terminate_build 0 +Name: python-datasketch +Version: 1.5.9 +Release: 1 +Summary: Probabilistic data structures for processing and searching very large datasets +License: MIT +URL: https://ekzhu.github.io/datasketch +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/34/42/22ca877495066c15f05ed0fef1769545ff81efc97de0bfca49e703e06a49/datasketch-1.5.9.tar.gz +BuildArch: noarch + +Requires: python3-numpy +Requires: python3-scipy +Requires: python3-pyhash +Requires: python3-matplotlib +Requires: python3-scikit-learn +Requires: python3-scipy +Requires: python3-pandas +Requires: python3-SetSimilaritySearch +Requires: python3-pyfarmhash +Requires: python3-nltk +Requires: python3-cassandra-driver +Requires: python3-aiounittest +Requires: python3-motor +Requires: python3-redis +Requires: python3-cassandra-driver +Requires: python3-redis +Requires: python3-mock +Requires: python3-mockredispy +Requires: python3-coverage +Requires: python3-pymongo +Requires: python3-nose +Requires: python3-nose-exclude +Requires: python3-pytest + +%description +datasketch gives you probabilistic data structures that can process and +search very large amount of data super fast, with little loss of +accuracy. +This package contains the following data sketches: ++-------------------------+-----------------------------------------------+ +| Data Sketch | Usage | ++=========================+===============================================+ +| `MinHash`_ | estimate Jaccard similarity and cardinality | ++-------------------------+-----------------------------------------------+ +| `Weighted MinHash`_ | estimate weighted Jaccard similarity | ++-------------------------+-----------------------------------------------+ +| `HyperLogLog`_ | estimate cardinality | ++-------------------------+-----------------------------------------------+ +| `HyperLogLog++`_ | estimate cardinality | ++-------------------------+-----------------------------------------------+ +The following indexes for data sketches are provided to support +sub-linear query time: ++---------------------------+-----------------------------+------------------------+ +| Index | For Data Sketch | Supported Query Type | ++===========================+=============================+========================+ +| `MinHash LSH`_ | MinHash, Weighted MinHash | Jaccard Threshold | ++---------------------------+-----------------------------+------------------------+ +| `MinHash LSH Forest`_ | MinHash, Weighted MinHash | Jaccard Top-K | ++---------------------------+-----------------------------+------------------------+ +| `MinHash LSH Ensemble`_ | MinHash | Containment Threshold | ++---------------------------+-----------------------------+------------------------+ +datasketch must be used with Python 2.7 or above, NumPy 1.11 or above, and Scipy. +Note that `MinHash LSH`_ and `MinHash LSH Ensemble`_ also support Redis and Cassandra +storage layer (see `MinHash LSH at Scale`_). + +%package -n python3-datasketch +Summary: Probabilistic data structures for processing and searching very large datasets +Provides: python-datasketch +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-datasketch +datasketch gives you probabilistic data structures that can process and +search very large amount of data super fast, with little loss of +accuracy. +This package contains the following data sketches: ++-------------------------+-----------------------------------------------+ +| Data Sketch | Usage | ++=========================+===============================================+ +| `MinHash`_ | estimate Jaccard similarity and cardinality | ++-------------------------+-----------------------------------------------+ +| `Weighted MinHash`_ | estimate weighted Jaccard similarity | ++-------------------------+-----------------------------------------------+ +| `HyperLogLog`_ | estimate cardinality | ++-------------------------+-----------------------------------------------+ +| `HyperLogLog++`_ | estimate cardinality | ++-------------------------+-----------------------------------------------+ +The following indexes for data sketches are provided to support +sub-linear query time: ++---------------------------+-----------------------------+------------------------+ +| Index | For Data Sketch | Supported Query Type | ++===========================+=============================+========================+ +| `MinHash LSH`_ | MinHash, Weighted MinHash | Jaccard Threshold | ++---------------------------+-----------------------------+------------------------+ +| `MinHash LSH Forest`_ | MinHash, Weighted MinHash | Jaccard Top-K | ++---------------------------+-----------------------------+------------------------+ +| `MinHash LSH Ensemble`_ | MinHash | Containment Threshold | ++---------------------------+-----------------------------+------------------------+ +datasketch must be used with Python 2.7 or above, NumPy 1.11 or above, and Scipy. +Note that `MinHash LSH`_ and `MinHash LSH Ensemble`_ also support Redis and Cassandra +storage layer (see `MinHash LSH at Scale`_). + +%package help +Summary: Development documents and examples for datasketch +Provides: python3-datasketch-doc +%description help +datasketch gives you probabilistic data structures that can process and +search very large amount of data super fast, with little loss of +accuracy. +This package contains the following data sketches: ++-------------------------+-----------------------------------------------+ +| Data Sketch | Usage | ++=========================+===============================================+ +| `MinHash`_ | estimate Jaccard similarity and cardinality | ++-------------------------+-----------------------------------------------+ +| `Weighted MinHash`_ | estimate weighted Jaccard similarity | ++-------------------------+-----------------------------------------------+ +| `HyperLogLog`_ | estimate cardinality | ++-------------------------+-----------------------------------------------+ +| `HyperLogLog++`_ | estimate cardinality | ++-------------------------+-----------------------------------------------+ +The following indexes for data sketches are provided to support +sub-linear query time: ++---------------------------+-----------------------------+------------------------+ +| Index | For Data Sketch | Supported Query Type | ++===========================+=============================+========================+ +| `MinHash LSH`_ | MinHash, Weighted MinHash | Jaccard Threshold | ++---------------------------+-----------------------------+------------------------+ +| `MinHash LSH Forest`_ | MinHash, Weighted MinHash | Jaccard Top-K | ++---------------------------+-----------------------------+------------------------+ +| `MinHash LSH Ensemble`_ | MinHash | Containment Threshold | ++---------------------------+-----------------------------+------------------------+ +datasketch must be used with Python 2.7 or above, NumPy 1.11 or above, and Scipy. +Note that `MinHash LSH`_ and `MinHash LSH Ensemble`_ also support Redis and Cassandra +storage layer (see `MinHash LSH at Scale`_). + +%prep +%autosetup -n datasketch-1.5.9 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-datasketch -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 1.5.9-1 +- Package Spec generated @@ -0,0 +1 @@ +0bae5da2d263450d6d25d3e474977029 datasketch-1.5.9.tar.gz |
