1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
|
%global _empty_manifest_terminate_build 0
Name: python-dativatools
Version: 3.3.832
Release: 1
Summary: A selection of tools for easier processing of data using Pandas and AWS
License: MIT
URL: https://bitbucket.org/dativa4data/dativatools/
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/9f/b7/ec2af99f7fecb7c91025e890da5178ce6f5496e24c902c02d7007796c9b9/dativatools-3.3.832.tar.gz
BuildArch: noarch
%description
# Dativa Tools
Provides useful libraries for processing large data sets.
Developed by the team at [www.dativa.com](https://www.dativa.com) as we find them useful in our projects.
The key libraries included here are:
* dativa.tools.aws.S3Csv2Parquet - an AWS Glue based tool to transform CSV files to Parquet files
* dativa.tools.aws.AthenaClient - provide a simple wrapper to execute Athena queries and create tables. When combined
with the S3Csv2Parquet handler can automatically change Athena outputs to Parquet format
* dativa.tools.aws.PipelineClient - client to interact with the Pipeline API. When provided an api key, source S3
location, destination s3 location, and rules, it will clean the source file and post it to destination.
* dativa.tools.aws.S3Client - a wrapper for AWS's boto library for S3 enabling easier iteration over S3 files and
multiple deletions, as well as uploading multiple files
* dativa.tools.SQLClient - a wrapper for any PEP249 compliant database client with logging and splitting of queries
* dativa.tools.pandas.CSVHandler - improved CSV handling for Pandas
* dativa.tools.pandas.ParquetHandler - improved Parquet handling for pandas
* dativa.tools.pandas.Shapley - Shapley attribution modelling using pandas DataFrames
There are also some useful support functions for Pandas date and time handling.
As well as a function to save data out in a format suitable for Athena.
## Installation
```
pip install dativatools
```
Note that Dativa Tools uses loose binding to required libraries and the required binaries are thus not automatically installed with the package and you can import classes and functions from dativa tools without the required libraries installed. An ImportError is only raised at runtime if you are looking to use a function that depends on another package that is not installed.
The required libraries are listed in requirements.txt and include:
* pyarror for ParquetHandler
* pandas for all of the pandas extensions
* awsretry and boto3 for any functions requiring AWS access
* s3fs for many functions using S3
* blist for Shapley
* pycryptodome for encrypting CSVs in CSVHandler
* chardet for sniffing encodings in CSVHandler
* requests for PipelineClient
## Description
### dativa.tools.aws.AthenaClient
An easy to use client for AWS Athena that will create tables from S3 buckets (using AWS Glue) and run queries against these tables. It support full customisation of SerDe and column names on table creation.
Examples:
#### Creating tables
The library creates a temporary Glue crawler which is deleted after use, and will also create the database if it does not exist.
```python
from dativa.tools.aws import AthenaClient
ac = AthenaClient("us-east-1", "my_athena_db")
ac.create_table(table_name='my_first_table',
crawler_target={'S3Targets': [
{'Path': 's3://my-bucket/table-data'}]}
)
# Create a table with a custom SerDe and column names, typical for CSV files
ac.create_table(table_name='comcast_visio_match',
crawler_target={'S3Targets': [
{'Path': 's3://my-bucket/table-data-2', 'Exclusions': ['**._manifest']}]},
serde='org.apache.hadoop.hive.serde2.OpenCSVSerde',
columns=[{'Name': 'id', 'Type': 'string'}, {
'Name': 'device_id', 'Type': 'string'}, {'Name': 'subscriber_id', 'Type': 'string'}]
)
```
#### Running queries
```python
from dativa.tools.aws import AthenaClient
ac = AthenaClient("us-east-1", "my_athena_db")
ac.add_query(sql="select * from table",
name="My first query",
output_location= "s3://my-bucket/query-location/")
ac.wait_for_completion()
```
#### Fetch results of query
```python
from dativa.tools.aws import AthenaClient
ac = AthenaClient("us-east-1", "my_athena_db")
query = ac.add_query(sql="select * from table",
name="My first query",
output_location= "s3://my-bucket/query-location/")
ac.wait_for_completion()
ac.get_query_result(query)
```
#### Running queries with the output in Parquet and create an Athena table
```python
from dativa.tools.aws import AthenaClient, S3Csv2Parquet
scp = S3Csv2Parquet(region="us-east-1",
template_location="s3://my-bucket/glue-template-path/")
ac = AthenaClient("us-east-1", "my_athena_db", s3_parquet=scp)
ac.add_query(sql="select * from table",
name="my query that outputs Parquet",
output_location="s3://my-bucket/query-location/",
parquet=True)
ac.wait_for_completion()
ac.create_table({'S3Targets': [{'Path': "s3://my-bucket/query-location/"}]},
table_name="query_location")
```
### dativa.tools.aws.S3Client
An easy to use client for AWS S3 that adds some functionality
Examples:
#### S3Location
Class that parses out an S3 location from a passed string. Subclass of `str`
so supports most string operations.
Also contains properties .bucket, .key, .path, .prefix and method .join()
* param s3_str: string representation of s3 location, accepts most common formats
```
eg:
- 's3://bucket/folder/file.txt'
- 'bucket/folder'
- 'http[s]://s3*.amazonaws.com/bucket-name/'
also accepts None if using `bucket` and `key` keyword
```
* param bucket: ignored if s3_str is not None. can specify only bucket for
bucket='mybucket' - 's3://mybucket/' or in conjuction with `key`
* param key: ignored if s3_str is not None. Bucket must be set.
bucket='mybucket', key='path/to/file' - 's3://mybucket/path/to/file'
* param ignore_double_slash: default False. If true allows s3 locations containing '//'
these are valid s3 paths, but typically result from mistaken joins
#### Batch deleting of files on S3
```python
from dativa.tools.aws import S3Client
# Delete all files in a folder
s3 = S3Client()
s3.delete_files(bucket="bucket_name", prefix="/delete-this-folder/")
# Delete only .csv.metadata files in a folder
s3 = S3Client()
s3.delete_files(bucket="bucket_name", prefix="/delete-this-folder/", suffix=".csv.metadata")
```
#### Copy files from folder in local filesystem to s3 bucket
```python
from dativa.tools.aws import S3Client
s3 = S3Client()
s3.put_folder(source="/home/user/my_folder", bucket="bucket_name", destination="backup/files")
# Copy all csv files from folder to s3
s3.put_folder(source="/home/user/my_folder", bucket="bucket_name", destination="backup/files", file_format="*.csv")
```
### dativa.tools.SQLClient
A SQL client that wraps any PEP249 compliant connection object and provides detailed logging and simple query execution.
It takes the following parameters when instantaited:
- db_connection - a PEP257 compatible database connection
- logger - the logger to use
- logging_level - the level at which to log most output
- log_query_text - whether to log all of the query text
- humour - if set to true output jokes to pass the time of day waiting for queries to complete
#### execute_query
Runs a query and ignores any output
Parameters:
- query - the query to run, either a SQL file or a SQL query
- parameters - a dict of parameters to substitute in the query
- replace - a dict or items to be replaced in the SQL text
- first_to_run - the index of the first query in a mult-command query to be executed
#### execute_query_to_df
Runs a query and returns the output of the final statement in a DataFrame.
Parameters:
- query - the query to run, either a SQL file or a SQL query
- parameters - a dict of parameters to substitute in the query
- replace - a dict or items to be replaced in the SQL text
- first_to_run - the index of the first query in a mult-command query to be executed
#### def execute_query_to_csv
Runs a query and writes the output of the final statement to a CSV file.
Parameters:
- query - the query to run, either a SQL file or a SQL query
- csvfile - the file name to save the query results to
- parameters - a dict of parameters to substitute in the query
- replace - a dict or items to be replaced in the SQL text
#### Example code
```python
import os
import psycopg2
from dativa.tools import SqlClient
# set up the SQL client from environment variables
sql = SqlClient(psycopg2.connect(
database=os.environ["DB_NAME"],
user=os.environ["USER"],
password=os.environ["PASSWORD"],
host=os.environ["HOST"],
port=os.environ["PORT"],
client_encoding="UTF-8",
connect_timeout=10))
# create the full schedule table
df = sql.execute_query_to_df(query="sql/my_query.sql",
parameters={"start_date": "2018-01-01",
"end_date": "2018-02-01"})
```
### dativa.tools.log_to_stdout
A convenience function to redirect a specific logger and its children to stdout
```python
import logging
from dativa.tools import log_to_stdout
log_to_stdout("dativa.tools", logging.DEBUG)
```
### dativa.tools.pandas.CSVHandler
A wrapper for pandas CSV handling to read and write dataframes
that is provided in pandas with consistent CSV parameters and
sniffing the CSV parameters automatically.
Includes reading a CSV into a dataframe, and writing it out to a string.
#### Parameters
- base_path: the base path for any CSV file read, if passed as a string
- detect_parameters: whether the encoding of the CSV file should be automatically detected
- encoding: the encoding of the CSV files, defaults to UTF-8
- delimiter: the delimeter used in the CSV, defaults to ,
- header: the index of the header row, or -1 if there is no header
- skiprows: the number of rows at the beginning of file to skip
- quotechar: the quoting character to use, defaults to ""
- include_index: specifies whether the index should be written out, default to False
- compression: specifies whether the data should be compressed, default to 'infer', current support for writing out gzip and zip compressed files
- nan_values: an array of possible NaN values, the first of which is used when writign out, defaults to None
- line_terminator: the line terminator to be used
- quoting: the level of quoting, defaults to QUOTE_MINIMAL
- decimal: the decimal character, defaults to '.'
- chunksize: if specified the CSV is written out in chunks
- aes_key: bytes, allowable lengths are 16, 24, 32
- zipfile_compression: the type of zip compressions to use, default to ZIP_DEFLATED
for decrypting and encrypting CSVs when passing to a dataframe, this uses AES CFB encryption via Pycryptodome
- aes_iv: bytes, must have length of 16
the initialization vector for the AES CFB encryption via Pycryptodome. If aes_key is specified and this is
not, it will auto-generate an iv and prefix it to the encrypted bytes.
#### load_df
Opens a CSV file using the specified configuration for the class and raises an exception if the encoding is unparseable.
Detects if base_path is an S3 location and loads data from there if required.
Parameters:
- file - File path. Should begin with 's3://' to load from S3 location.
- force_dtype - Force data type for data or columns, defaults to None
- kwargs - any of the keyword arguments used to create the class can also be passed to load_df
Returns:
- dataframe
#### save_df
Writes a formatted string from a dataframe using the specified configuration for the class the file. Detects if base_path is an S3 location and saves data there if required.
Parameters:
- df - Dataframe to save
- file - File path. Should begin with 's3://' to save to an S3 location.
- kwargs - any of the keyword arguments used to create the class can also be passed to save_df
#### df_to_string
Returns a formatted string from a dataframe using the specified configuration for the class.
Parameters:
- df - Dataframe to convert to string
- kwargs - any of the keyword arguments used to create the class can also be passed to df_to_string
Returns:
- string
#### Example code
```python
from dativa.tools.pandas import CSVHandler
# Create the CSV handler
csv = CSVHandler(base_path='s3://my-bucket-name/')
# Load a file
df = csv.load_df('my-file-name.csv')
# Create a string
str_df = csv.df_to_string(df)
# Save a file
csv.save_df(df, 'another-path/another-file-name.csv')
```
### Support functions for Pandas
* dativa.tools.pandas.is_numeric - a function to check whether a series or string is numeric
* dativa.tools.pandas.string_to_datetime - a function to convert a string, or series of strings to a datetime, with a strptime date format that supports nanoseconds
* dativa.tools.pandas.datetime_to_string - a function to convert a datetime, or a series of datetimes to a string, with a strptime date format that supports nanoseconds
* dativa.tools.pandas.format_string_is_valid - a function to confirm whether a strptime format string returns a date
* dativa.tools.pandas.get_column_name - a function to return the name of a column from a passed column name or index.
* dativa.tools.pandas.get_unique_column_name - a function to return a unique column name when adding new columns to a DataFrame
### dativa.tools.pandas.ParquetHandler
ParquetHandler class, specify path of parquet file,
and get pandas dataframe for analysis and modification.
* param base_path : The base location where the parquet_files are stored.
* type base_path : str
* param row_group_size : The size of the row groups while writing out the parquet file.
* type row_group_size : int
* param use_dictionary : Specify whether to use boolean encoding or not
* type use_dictionary : bool
* param use_deprecated_int96_timestamps : Write nanosecond resolution timestamps to INT96 Parquet format.
* type use_deprecated_int96_timestamps : bool
* param coerce_timestamps : Cast timestamps a particular resolution. Valid values: {None, 'ms', 'us'}
* type coerce_timestamps : str
* param compression : Specify the compression codec.
* type compression : str
```python
from dativa.tools.pandas import CSVHandler, ParquetHandler
# Read a parquet file
pq_obj = ParquetHandler()
df_parquet = pq_obj.load_df('data.parquet')
# save a csv_file to parquet
csv = CSVHandler(csv_delimiter=",")
df = csv.load_df('emails.csv')
pq_obj = ParquetHandler()
pq_obj.save_df(df, 'emails.parquet')
```
#### save_df
Saves the df as parquet to the file path given to it, similar to CSVHandler save_df.
##### Parameters
* param df : A pandas dataframe to write to original file location of parquet file.
* type df : pandas.DataFrame
* param row_group_size : The size of the row groups while writing out the parquet file.
* type row_group_size : int
* param use_deprecated_int96_timestamps : Write nanosecond resolution timestamps to INT96 Parquet format.
* type use_deprecated_int96_timestamps : bool
* param coerce_timestamps : Cast timestamps a particular resolution. Valid values: {None, 'ms', 'us'}
* type coerce_timestamps : str
* param compression : Specify the compression codec.
* type compression : str
* param schema : Used to set the desired schema for pyarrow table, if not provided schema is inferred
* type schema : pyarrow.lib.Schema or dict
* param infer_other_dtypes : Used when schema is specified. When True, if there are columns not specified in schema then their dtypes are inferred. When false, if there are columns not specified in schema then raise an error. Default behaviour is False.
* type infer_other_dtypes : bool
For convenience, ParquetHandler allows a python dict to be passed to the schema argument. The dict should have column names as the keys and desired types as the values. A dict or schema for only some of the columns may be passed, the types for the rest of the columns will then be inferred. The types are inferred by looking at the types for the non-null values in each column. An error is raised if there multiple types in each column.
Example code of how to pass a dict to the schema argument. In this example, only columns `col1` and `col2` are given types, any other columns will have their types inferred.
```python
pq_obj = ParquetHandler()
dict_schema = {'col1': str, 'col3': int}
pq_obj.save_df(test_df, new_file_path, schema=dict_schema)
```
Example code on how to generate pyarrow.lib.schema objects and how to pass the schema to save_df.
```python
pq_obj = ParquetHandler()
fields = [
pa.field("col1", pa.int64()),
pa.field("col2", pa.string())]
my_schema = pa.schema(fields)
pq_obj.save_df(test_df, new_file_path, schema=my_schema)
```
### dativa.tools.pandas athena_partition
A function to handle partitioning and saving a pandas DataFrame in a format compatible with athena. Using one or more specified column from the DataFrame being saved.
##### Parameters
* param df : The data frame to be partitioned
* type df : pandas.DataFrame
* param partition_categories : The columns to partition the data on
* type partition_categories : list
* param file_handler : The appropriate file handler to save the data, currently tested for dativa CSVHandler and ParquetHandler support, other handlers are untested
* type file_handler : obj
* param suffix : The extension the file should be saved with, .csv for csv, and .parquet for parquet
* type suffix : str
* param columns_to_keep : Columns to keep from the data frame, if not supplied default behaviour is to keep all columns
* type columns_to_keep : list
* param date_time_format : To minimise chances of overwrite the saved files contain the date time of when this function was called, this param specifies the format of the date time in strftime format
* type date_time_format : str
* param name : If provided all files filename will start with this
* type name : str
* param partition_string : Allows formatting folder names, will be dependant on how many partition categories there are, defaults to creating folders and sub folders in order of partitioning
* type partition_string : str
* param partition_dtypes : Can pass argument to set the dtype of a particular column, to ensure proper grouping, also doubles to checking the column doesnt contain values of an unexpected dtype
* type partition_dtypes : list
* param kwargs : Any additional key word arguments to be passed to the handler
* return : Returns a full list of all file paths created, doesnt return base path as part of this
### dativa.tools.aws import S3Csv2Parquet
An easy to use module for converting csv files on s3 to praquet using aws glue jobs.
For S3 access and glue access suitable credentials should be available in '~/.aws/credentials' or the AWS_ACCESS_KEY_ID/AWS_SECRET_ACCESS_KEY environment variables.
#### S3Csv2Parquet
Parameters:
- region - str,
AWS region in which glue job is to be run
- template_location - str,
S3 bucket Folder in which template scripts are
located or need to be copied.
format s3://bucketname/folder/
it is not clear to those unfamiliar with glue what this is.
- glue_role - str,
Name of the glue role which need to be assigned to the
Glue Job.
- max_jobs - int, default 5
Maximum number of jobs the can run concurrently in the queue
- retry_limit - int, default 3
Maximum number of retries allowed per job on failure
#### convert
Parameters:
- csv_path - str or list of str for multiple files,
s3 location of the csv file
format s3://bucketname/folder/file.csv
Pass a list for multiple files
- output_folder - str, default set to folder where csv files are located
s3 location at which paraquet file should be copied
format s3://bucketname/folder
- schema - list of tuples,
If not specified schema is inferred from the file
format [(column1, datatype), (column2, datatype)]
Supported datatypes are boolean, double, float, integer,
long, null, short, string
- name - str, default 'parquet_csv_convert'
Name to be assigned to glue job
- allocated_capacity - int, default 2
The number of AWS Glue data processing units (DPUs) to allocate to this Job.
From 2 to 100 DPUs can be allocated
- delete_csv - boolean, default False
If set source csv files are deleted post successful completion of job
- separator - character, default ','
Delimiter character in csv files
- with_header- int, default 1
Specifies whether to treat the first line as a header
Can take values 0 or 1
- compression - str, default None
If not specified compression is not applied.
Can take values snappy, gzip, and lzo
- partition_by - list of str, default None
List containing columns to partition data by
- mode - str, default append
Options include:
overwrite: will remove data from output_folder before writing out
converted file.
append: Will write out to output_folder without deleting existing
data.
ignore: Silently ignore this operation if data already exists.
#### Example
```python
from dativa.tools.aws import S3Csv2Parquet
# Initial setup
csv2parquet_obj = S3Csv2Parquet("us-east-1", "s3://my-bucket/templatefolder")
# Create/update a glue job to convert csv files and execute it
csv2parquet_obj.convert("s3://my-bucket/file_to_be_converted_1.csv")
csv2parquet_obj.convert("s3://my-bucket/file_to_be_converted_2.csv")
# Wait for completion of jobs
csv2parquet_obj.wait_for_completion()
```
### dativa.tools.pandas.Shapley
Shapley attribution of scores to members of sets.
See [medium](https://towardsdatascience.com/one-feature-attribution-method-to-supposedly-rule-them-all-shapley-values-f3e04534983d)
or [wiki](https://en.wikipedia.org/wiki/Shapley_value) for details on the math. The aim is to apportion scores between the members of a set
responsible for producing that score.
Takes two DataFrames as input, one containing impressions from campaigns and the other containing conversions.
eg. campaigns
|viewer_id|campaign_id|
| :----:|:-----:|
|20|B|
|19|B|
|12|B|
|6|A|
|17|B|
|12|B|
|8|B|
|3|A|
|18|A|
where a campaign_id might be a campaign that an individual has interacted with. Each viewer / campaign
pair is only considered once.
eg 2. conversions
|viewer_id|
|: --- :|
|14|
|12|
|2|
|3|
|11|
these are individuals that have converted. From this a conversion rate is calculated which is used as a score.
That score is apportioned among the campaigns.
Typically not all combinations of impressions are present (particularly in where there are lots of
campaigns being run). The missing combinations are assigned a default score, which might be an average conversion rate
or similar. This is passed to the class constructor as `default_score` and must be numeric.
### Example code
```python
s = Shapley(df_campaigns, df_conversions, 'viewer_id', 'campaign_id', default_score=0.01)
results = s.run()
```
## dativa.tools.FileValidation
A module to validate the files present in a given directory based on glob pattern matching. The
FileValidation class initialises and checks a set of rules for a file validation, this can then be run for various
paths and glob pattern matches via a method (run_validator). Validation is be based on
various properties - time last modified, size and the number of files which match criteria. Examples on how to use
the file validation are provided below.
FileValidation Arguments:
* timestamp: (tuple or str or None) strings for min and max time (str or None, str or None) in UTC. This is
read in with datetime.strptime, so must use compatible formats
* file_size: (tuple or int or None) min and max size in bytes (int or None, int or None), treats single int
as minimum
* file_count: (tuple or int or None) min and max file count, treats single int as minimum
* timestamp_format: (str) string for a valid timestamp, specified format for both max and min timestamp,
uses datetime.strptime, hence must be in compatible format.
run_validator Arguments:
* path: (str) path to the files - can either be a path for S3Location or an absolute local file path. CANNOT HAVE '/' AS THE FINAL CHARACTER.
* glob_pattern: (str) pattern of glob files to be examined. CANNOT HAVE '/' AS THE FIRST CHARACTER.
* consider_correctly_formed_files: (bool) if False, consider malformed files (which do not match validation) for the
file_count argument of FileValidation
* raise_exceptions: (bool) whether to raise exception when finding files which do not match validation criteria
### Example codes
The code can either return a list of files (either all which match the criteria or those which do not) or raise an
exception if any files fail the validation. This can be applied to either files on S3 or on the local filesystem.
The files to be validated are specified via s3fs.glob for S3 (see https://s3fs.readthedocs.io/en/latest/) and glob.glob
for local files (see https://docs.python.org/3/library/glob.html).
### Check number of CSVs in a given path
```python
from dativa.tools import FileValidation
# ensure there are between 10 and 100 CSVs in your target folder
# this command ignores other file extensions (e.g. .tsv files) as they aren't picked up by the glob pattern
fv = FileValidation(file_count=(10, 100)) # between 10 and 100 bytes
# if validation is not met, raise an exception
fv.run_validator(path="s3://some-bucket/some-path",
glob_pattern="*.csv",
raise_exceptions=True)
```
### Check that a specific file was last modified on a specific date and is smaller than a given size
```python
from dativa.tools import FileValidation
fv = FileValidation(file_size=(None, 2*2**10), # 2 KB
timestamp=("2018-12-25", "2018-12-25"), # made on 25th Dec 2018
timestamp_format="%Y-%m-%d")
# if validation is not met, raise an exception
fv.run_validator(path="s3://some-bucket/some-path",
glob_pattern="some-specific-key.csv",
raise_exceptions=True)
```
### Return file which do not match a certain size and age range
```python
from dativa.tools import FileValidation
from datetime import datetime
fv = FileValidation(file_size=(10, None), # minimum file size of 10 bytes
# no minimum time, earliest files made today
timestamp=(None, datetime.utcnow().strftime("%Y-%m-%d")),
timestamp_format="%Y-%m-%d")
# return files in dictionary
list_of_bad_files = fv.run_validator(path="/Users/your-name/absolute/file/path",
glob_pattern="*",
consider_correctly_formed_files=False)
```
### Local file paths must be _absolute_ paths rather than relative paths
```python
from dativa.tools import FileValidation
fv = FileValidation(file_size=(10, 10*2**20) # between 10 bytes and 10 GB
)
# return files which do not match the specified validation
list_of_bad_files = fv.run_validator(path="/Users/your-name/absolute/file/path",
glob_pattern="*",
consider_correctly_formed_files=False)
# return files which match the specified validation
list_of_good_files = fv.run_validator(path="/Users/your-name/absolute/file/path",
glob_pattern="*",
consider_correctly_formed_files=True)
```
### NOTE - both the path must not end with a '/' AND glob_pattern must not start with one
```python
from dativa.tools import FileValidation
fv = FileValidation(file_size=(10, None), # minimum file size of 10 bytes
)
# return files in dictionary
this_will_not_run = fv.run_validator(path="/Users/your-name/absolute/file/path/",
glob_pattern="/*",
consider_correctly_formed_files=False)
also_will_not_run = fv.run_validator(path="/Users/your-name/absolute/file/path/",
glob_pattern="*",
consider_correctly_formed_files=False)
again_will_not_run = fv.run_validator(path="/Users/your-name/absolute/file/path",
glob_pattern="/*",
consider_correctly_formed_files=False)
```
## Legacy classes
The modules in the dativatools namespace are legacy only and will be deprecated in future.
%package -n python3-dativatools
Summary: A selection of tools for easier processing of data using Pandas and AWS
Provides: python-dativatools
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-dativatools
# Dativa Tools
Provides useful libraries for processing large data sets.
Developed by the team at [www.dativa.com](https://www.dativa.com) as we find them useful in our projects.
The key libraries included here are:
* dativa.tools.aws.S3Csv2Parquet - an AWS Glue based tool to transform CSV files to Parquet files
* dativa.tools.aws.AthenaClient - provide a simple wrapper to execute Athena queries and create tables. When combined
with the S3Csv2Parquet handler can automatically change Athena outputs to Parquet format
* dativa.tools.aws.PipelineClient - client to interact with the Pipeline API. When provided an api key, source S3
location, destination s3 location, and rules, it will clean the source file and post it to destination.
* dativa.tools.aws.S3Client - a wrapper for AWS's boto library for S3 enabling easier iteration over S3 files and
multiple deletions, as well as uploading multiple files
* dativa.tools.SQLClient - a wrapper for any PEP249 compliant database client with logging and splitting of queries
* dativa.tools.pandas.CSVHandler - improved CSV handling for Pandas
* dativa.tools.pandas.ParquetHandler - improved Parquet handling for pandas
* dativa.tools.pandas.Shapley - Shapley attribution modelling using pandas DataFrames
There are also some useful support functions for Pandas date and time handling.
As well as a function to save data out in a format suitable for Athena.
## Installation
```
pip install dativatools
```
Note that Dativa Tools uses loose binding to required libraries and the required binaries are thus not automatically installed with the package and you can import classes and functions from dativa tools without the required libraries installed. An ImportError is only raised at runtime if you are looking to use a function that depends on another package that is not installed.
The required libraries are listed in requirements.txt and include:
* pyarror for ParquetHandler
* pandas for all of the pandas extensions
* awsretry and boto3 for any functions requiring AWS access
* s3fs for many functions using S3
* blist for Shapley
* pycryptodome for encrypting CSVs in CSVHandler
* chardet for sniffing encodings in CSVHandler
* requests for PipelineClient
## Description
### dativa.tools.aws.AthenaClient
An easy to use client for AWS Athena that will create tables from S3 buckets (using AWS Glue) and run queries against these tables. It support full customisation of SerDe and column names on table creation.
Examples:
#### Creating tables
The library creates a temporary Glue crawler which is deleted after use, and will also create the database if it does not exist.
```python
from dativa.tools.aws import AthenaClient
ac = AthenaClient("us-east-1", "my_athena_db")
ac.create_table(table_name='my_first_table',
crawler_target={'S3Targets': [
{'Path': 's3://my-bucket/table-data'}]}
)
# Create a table with a custom SerDe and column names, typical for CSV files
ac.create_table(table_name='comcast_visio_match',
crawler_target={'S3Targets': [
{'Path': 's3://my-bucket/table-data-2', 'Exclusions': ['**._manifest']}]},
serde='org.apache.hadoop.hive.serde2.OpenCSVSerde',
columns=[{'Name': 'id', 'Type': 'string'}, {
'Name': 'device_id', 'Type': 'string'}, {'Name': 'subscriber_id', 'Type': 'string'}]
)
```
#### Running queries
```python
from dativa.tools.aws import AthenaClient
ac = AthenaClient("us-east-1", "my_athena_db")
ac.add_query(sql="select * from table",
name="My first query",
output_location= "s3://my-bucket/query-location/")
ac.wait_for_completion()
```
#### Fetch results of query
```python
from dativa.tools.aws import AthenaClient
ac = AthenaClient("us-east-1", "my_athena_db")
query = ac.add_query(sql="select * from table",
name="My first query",
output_location= "s3://my-bucket/query-location/")
ac.wait_for_completion()
ac.get_query_result(query)
```
#### Running queries with the output in Parquet and create an Athena table
```python
from dativa.tools.aws import AthenaClient, S3Csv2Parquet
scp = S3Csv2Parquet(region="us-east-1",
template_location="s3://my-bucket/glue-template-path/")
ac = AthenaClient("us-east-1", "my_athena_db", s3_parquet=scp)
ac.add_query(sql="select * from table",
name="my query that outputs Parquet",
output_location="s3://my-bucket/query-location/",
parquet=True)
ac.wait_for_completion()
ac.create_table({'S3Targets': [{'Path': "s3://my-bucket/query-location/"}]},
table_name="query_location")
```
### dativa.tools.aws.S3Client
An easy to use client for AWS S3 that adds some functionality
Examples:
#### S3Location
Class that parses out an S3 location from a passed string. Subclass of `str`
so supports most string operations.
Also contains properties .bucket, .key, .path, .prefix and method .join()
* param s3_str: string representation of s3 location, accepts most common formats
```
eg:
- 's3://bucket/folder/file.txt'
- 'bucket/folder'
- 'http[s]://s3*.amazonaws.com/bucket-name/'
also accepts None if using `bucket` and `key` keyword
```
* param bucket: ignored if s3_str is not None. can specify only bucket for
bucket='mybucket' - 's3://mybucket/' or in conjuction with `key`
* param key: ignored if s3_str is not None. Bucket must be set.
bucket='mybucket', key='path/to/file' - 's3://mybucket/path/to/file'
* param ignore_double_slash: default False. If true allows s3 locations containing '//'
these are valid s3 paths, but typically result from mistaken joins
#### Batch deleting of files on S3
```python
from dativa.tools.aws import S3Client
# Delete all files in a folder
s3 = S3Client()
s3.delete_files(bucket="bucket_name", prefix="/delete-this-folder/")
# Delete only .csv.metadata files in a folder
s3 = S3Client()
s3.delete_files(bucket="bucket_name", prefix="/delete-this-folder/", suffix=".csv.metadata")
```
#### Copy files from folder in local filesystem to s3 bucket
```python
from dativa.tools.aws import S3Client
s3 = S3Client()
s3.put_folder(source="/home/user/my_folder", bucket="bucket_name", destination="backup/files")
# Copy all csv files from folder to s3
s3.put_folder(source="/home/user/my_folder", bucket="bucket_name", destination="backup/files", file_format="*.csv")
```
### dativa.tools.SQLClient
A SQL client that wraps any PEP249 compliant connection object and provides detailed logging and simple query execution.
It takes the following parameters when instantaited:
- db_connection - a PEP257 compatible database connection
- logger - the logger to use
- logging_level - the level at which to log most output
- log_query_text - whether to log all of the query text
- humour - if set to true output jokes to pass the time of day waiting for queries to complete
#### execute_query
Runs a query and ignores any output
Parameters:
- query - the query to run, either a SQL file or a SQL query
- parameters - a dict of parameters to substitute in the query
- replace - a dict or items to be replaced in the SQL text
- first_to_run - the index of the first query in a mult-command query to be executed
#### execute_query_to_df
Runs a query and returns the output of the final statement in a DataFrame.
Parameters:
- query - the query to run, either a SQL file or a SQL query
- parameters - a dict of parameters to substitute in the query
- replace - a dict or items to be replaced in the SQL text
- first_to_run - the index of the first query in a mult-command query to be executed
#### def execute_query_to_csv
Runs a query and writes the output of the final statement to a CSV file.
Parameters:
- query - the query to run, either a SQL file or a SQL query
- csvfile - the file name to save the query results to
- parameters - a dict of parameters to substitute in the query
- replace - a dict or items to be replaced in the SQL text
#### Example code
```python
import os
import psycopg2
from dativa.tools import SqlClient
# set up the SQL client from environment variables
sql = SqlClient(psycopg2.connect(
database=os.environ["DB_NAME"],
user=os.environ["USER"],
password=os.environ["PASSWORD"],
host=os.environ["HOST"],
port=os.environ["PORT"],
client_encoding="UTF-8",
connect_timeout=10))
# create the full schedule table
df = sql.execute_query_to_df(query="sql/my_query.sql",
parameters={"start_date": "2018-01-01",
"end_date": "2018-02-01"})
```
### dativa.tools.log_to_stdout
A convenience function to redirect a specific logger and its children to stdout
```python
import logging
from dativa.tools import log_to_stdout
log_to_stdout("dativa.tools", logging.DEBUG)
```
### dativa.tools.pandas.CSVHandler
A wrapper for pandas CSV handling to read and write dataframes
that is provided in pandas with consistent CSV parameters and
sniffing the CSV parameters automatically.
Includes reading a CSV into a dataframe, and writing it out to a string.
#### Parameters
- base_path: the base path for any CSV file read, if passed as a string
- detect_parameters: whether the encoding of the CSV file should be automatically detected
- encoding: the encoding of the CSV files, defaults to UTF-8
- delimiter: the delimeter used in the CSV, defaults to ,
- header: the index of the header row, or -1 if there is no header
- skiprows: the number of rows at the beginning of file to skip
- quotechar: the quoting character to use, defaults to ""
- include_index: specifies whether the index should be written out, default to False
- compression: specifies whether the data should be compressed, default to 'infer', current support for writing out gzip and zip compressed files
- nan_values: an array of possible NaN values, the first of which is used when writign out, defaults to None
- line_terminator: the line terminator to be used
- quoting: the level of quoting, defaults to QUOTE_MINIMAL
- decimal: the decimal character, defaults to '.'
- chunksize: if specified the CSV is written out in chunks
- aes_key: bytes, allowable lengths are 16, 24, 32
- zipfile_compression: the type of zip compressions to use, default to ZIP_DEFLATED
for decrypting and encrypting CSVs when passing to a dataframe, this uses AES CFB encryption via Pycryptodome
- aes_iv: bytes, must have length of 16
the initialization vector for the AES CFB encryption via Pycryptodome. If aes_key is specified and this is
not, it will auto-generate an iv and prefix it to the encrypted bytes.
#### load_df
Opens a CSV file using the specified configuration for the class and raises an exception if the encoding is unparseable.
Detects if base_path is an S3 location and loads data from there if required.
Parameters:
- file - File path. Should begin with 's3://' to load from S3 location.
- force_dtype - Force data type for data or columns, defaults to None
- kwargs - any of the keyword arguments used to create the class can also be passed to load_df
Returns:
- dataframe
#### save_df
Writes a formatted string from a dataframe using the specified configuration for the class the file. Detects if base_path is an S3 location and saves data there if required.
Parameters:
- df - Dataframe to save
- file - File path. Should begin with 's3://' to save to an S3 location.
- kwargs - any of the keyword arguments used to create the class can also be passed to save_df
#### df_to_string
Returns a formatted string from a dataframe using the specified configuration for the class.
Parameters:
- df - Dataframe to convert to string
- kwargs - any of the keyword arguments used to create the class can also be passed to df_to_string
Returns:
- string
#### Example code
```python
from dativa.tools.pandas import CSVHandler
# Create the CSV handler
csv = CSVHandler(base_path='s3://my-bucket-name/')
# Load a file
df = csv.load_df('my-file-name.csv')
# Create a string
str_df = csv.df_to_string(df)
# Save a file
csv.save_df(df, 'another-path/another-file-name.csv')
```
### Support functions for Pandas
* dativa.tools.pandas.is_numeric - a function to check whether a series or string is numeric
* dativa.tools.pandas.string_to_datetime - a function to convert a string, or series of strings to a datetime, with a strptime date format that supports nanoseconds
* dativa.tools.pandas.datetime_to_string - a function to convert a datetime, or a series of datetimes to a string, with a strptime date format that supports nanoseconds
* dativa.tools.pandas.format_string_is_valid - a function to confirm whether a strptime format string returns a date
* dativa.tools.pandas.get_column_name - a function to return the name of a column from a passed column name or index.
* dativa.tools.pandas.get_unique_column_name - a function to return a unique column name when adding new columns to a DataFrame
### dativa.tools.pandas.ParquetHandler
ParquetHandler class, specify path of parquet file,
and get pandas dataframe for analysis and modification.
* param base_path : The base location where the parquet_files are stored.
* type base_path : str
* param row_group_size : The size of the row groups while writing out the parquet file.
* type row_group_size : int
* param use_dictionary : Specify whether to use boolean encoding or not
* type use_dictionary : bool
* param use_deprecated_int96_timestamps : Write nanosecond resolution timestamps to INT96 Parquet format.
* type use_deprecated_int96_timestamps : bool
* param coerce_timestamps : Cast timestamps a particular resolution. Valid values: {None, 'ms', 'us'}
* type coerce_timestamps : str
* param compression : Specify the compression codec.
* type compression : str
```python
from dativa.tools.pandas import CSVHandler, ParquetHandler
# Read a parquet file
pq_obj = ParquetHandler()
df_parquet = pq_obj.load_df('data.parquet')
# save a csv_file to parquet
csv = CSVHandler(csv_delimiter=",")
df = csv.load_df('emails.csv')
pq_obj = ParquetHandler()
pq_obj.save_df(df, 'emails.parquet')
```
#### save_df
Saves the df as parquet to the file path given to it, similar to CSVHandler save_df.
##### Parameters
* param df : A pandas dataframe to write to original file location of parquet file.
* type df : pandas.DataFrame
* param row_group_size : The size of the row groups while writing out the parquet file.
* type row_group_size : int
* param use_deprecated_int96_timestamps : Write nanosecond resolution timestamps to INT96 Parquet format.
* type use_deprecated_int96_timestamps : bool
* param coerce_timestamps : Cast timestamps a particular resolution. Valid values: {None, 'ms', 'us'}
* type coerce_timestamps : str
* param compression : Specify the compression codec.
* type compression : str
* param schema : Used to set the desired schema for pyarrow table, if not provided schema is inferred
* type schema : pyarrow.lib.Schema or dict
* param infer_other_dtypes : Used when schema is specified. When True, if there are columns not specified in schema then their dtypes are inferred. When false, if there are columns not specified in schema then raise an error. Default behaviour is False.
* type infer_other_dtypes : bool
For convenience, ParquetHandler allows a python dict to be passed to the schema argument. The dict should have column names as the keys and desired types as the values. A dict or schema for only some of the columns may be passed, the types for the rest of the columns will then be inferred. The types are inferred by looking at the types for the non-null values in each column. An error is raised if there multiple types in each column.
Example code of how to pass a dict to the schema argument. In this example, only columns `col1` and `col2` are given types, any other columns will have their types inferred.
```python
pq_obj = ParquetHandler()
dict_schema = {'col1': str, 'col3': int}
pq_obj.save_df(test_df, new_file_path, schema=dict_schema)
```
Example code on how to generate pyarrow.lib.schema objects and how to pass the schema to save_df.
```python
pq_obj = ParquetHandler()
fields = [
pa.field("col1", pa.int64()),
pa.field("col2", pa.string())]
my_schema = pa.schema(fields)
pq_obj.save_df(test_df, new_file_path, schema=my_schema)
```
### dativa.tools.pandas athena_partition
A function to handle partitioning and saving a pandas DataFrame in a format compatible with athena. Using one or more specified column from the DataFrame being saved.
##### Parameters
* param df : The data frame to be partitioned
* type df : pandas.DataFrame
* param partition_categories : The columns to partition the data on
* type partition_categories : list
* param file_handler : The appropriate file handler to save the data, currently tested for dativa CSVHandler and ParquetHandler support, other handlers are untested
* type file_handler : obj
* param suffix : The extension the file should be saved with, .csv for csv, and .parquet for parquet
* type suffix : str
* param columns_to_keep : Columns to keep from the data frame, if not supplied default behaviour is to keep all columns
* type columns_to_keep : list
* param date_time_format : To minimise chances of overwrite the saved files contain the date time of when this function was called, this param specifies the format of the date time in strftime format
* type date_time_format : str
* param name : If provided all files filename will start with this
* type name : str
* param partition_string : Allows formatting folder names, will be dependant on how many partition categories there are, defaults to creating folders and sub folders in order of partitioning
* type partition_string : str
* param partition_dtypes : Can pass argument to set the dtype of a particular column, to ensure proper grouping, also doubles to checking the column doesnt contain values of an unexpected dtype
* type partition_dtypes : list
* param kwargs : Any additional key word arguments to be passed to the handler
* return : Returns a full list of all file paths created, doesnt return base path as part of this
### dativa.tools.aws import S3Csv2Parquet
An easy to use module for converting csv files on s3 to praquet using aws glue jobs.
For S3 access and glue access suitable credentials should be available in '~/.aws/credentials' or the AWS_ACCESS_KEY_ID/AWS_SECRET_ACCESS_KEY environment variables.
#### S3Csv2Parquet
Parameters:
- region - str,
AWS region in which glue job is to be run
- template_location - str,
S3 bucket Folder in which template scripts are
located or need to be copied.
format s3://bucketname/folder/
it is not clear to those unfamiliar with glue what this is.
- glue_role - str,
Name of the glue role which need to be assigned to the
Glue Job.
- max_jobs - int, default 5
Maximum number of jobs the can run concurrently in the queue
- retry_limit - int, default 3
Maximum number of retries allowed per job on failure
#### convert
Parameters:
- csv_path - str or list of str for multiple files,
s3 location of the csv file
format s3://bucketname/folder/file.csv
Pass a list for multiple files
- output_folder - str, default set to folder where csv files are located
s3 location at which paraquet file should be copied
format s3://bucketname/folder
- schema - list of tuples,
If not specified schema is inferred from the file
format [(column1, datatype), (column2, datatype)]
Supported datatypes are boolean, double, float, integer,
long, null, short, string
- name - str, default 'parquet_csv_convert'
Name to be assigned to glue job
- allocated_capacity - int, default 2
The number of AWS Glue data processing units (DPUs) to allocate to this Job.
From 2 to 100 DPUs can be allocated
- delete_csv - boolean, default False
If set source csv files are deleted post successful completion of job
- separator - character, default ','
Delimiter character in csv files
- with_header- int, default 1
Specifies whether to treat the first line as a header
Can take values 0 or 1
- compression - str, default None
If not specified compression is not applied.
Can take values snappy, gzip, and lzo
- partition_by - list of str, default None
List containing columns to partition data by
- mode - str, default append
Options include:
overwrite: will remove data from output_folder before writing out
converted file.
append: Will write out to output_folder without deleting existing
data.
ignore: Silently ignore this operation if data already exists.
#### Example
```python
from dativa.tools.aws import S3Csv2Parquet
# Initial setup
csv2parquet_obj = S3Csv2Parquet("us-east-1", "s3://my-bucket/templatefolder")
# Create/update a glue job to convert csv files and execute it
csv2parquet_obj.convert("s3://my-bucket/file_to_be_converted_1.csv")
csv2parquet_obj.convert("s3://my-bucket/file_to_be_converted_2.csv")
# Wait for completion of jobs
csv2parquet_obj.wait_for_completion()
```
### dativa.tools.pandas.Shapley
Shapley attribution of scores to members of sets.
See [medium](https://towardsdatascience.com/one-feature-attribution-method-to-supposedly-rule-them-all-shapley-values-f3e04534983d)
or [wiki](https://en.wikipedia.org/wiki/Shapley_value) for details on the math. The aim is to apportion scores between the members of a set
responsible for producing that score.
Takes two DataFrames as input, one containing impressions from campaigns and the other containing conversions.
eg. campaigns
|viewer_id|campaign_id|
| :----:|:-----:|
|20|B|
|19|B|
|12|B|
|6|A|
|17|B|
|12|B|
|8|B|
|3|A|
|18|A|
where a campaign_id might be a campaign that an individual has interacted with. Each viewer / campaign
pair is only considered once.
eg 2. conversions
|viewer_id|
|: --- :|
|14|
|12|
|2|
|3|
|11|
these are individuals that have converted. From this a conversion rate is calculated which is used as a score.
That score is apportioned among the campaigns.
Typically not all combinations of impressions are present (particularly in where there are lots of
campaigns being run). The missing combinations are assigned a default score, which might be an average conversion rate
or similar. This is passed to the class constructor as `default_score` and must be numeric.
### Example code
```python
s = Shapley(df_campaigns, df_conversions, 'viewer_id', 'campaign_id', default_score=0.01)
results = s.run()
```
## dativa.tools.FileValidation
A module to validate the files present in a given directory based on glob pattern matching. The
FileValidation class initialises and checks a set of rules for a file validation, this can then be run for various
paths and glob pattern matches via a method (run_validator). Validation is be based on
various properties - time last modified, size and the number of files which match criteria. Examples on how to use
the file validation are provided below.
FileValidation Arguments:
* timestamp: (tuple or str or None) strings for min and max time (str or None, str or None) in UTC. This is
read in with datetime.strptime, so must use compatible formats
* file_size: (tuple or int or None) min and max size in bytes (int or None, int or None), treats single int
as minimum
* file_count: (tuple or int or None) min and max file count, treats single int as minimum
* timestamp_format: (str) string for a valid timestamp, specified format for both max and min timestamp,
uses datetime.strptime, hence must be in compatible format.
run_validator Arguments:
* path: (str) path to the files - can either be a path for S3Location or an absolute local file path. CANNOT HAVE '/' AS THE FINAL CHARACTER.
* glob_pattern: (str) pattern of glob files to be examined. CANNOT HAVE '/' AS THE FIRST CHARACTER.
* consider_correctly_formed_files: (bool) if False, consider malformed files (which do not match validation) for the
file_count argument of FileValidation
* raise_exceptions: (bool) whether to raise exception when finding files which do not match validation criteria
### Example codes
The code can either return a list of files (either all which match the criteria or those which do not) or raise an
exception if any files fail the validation. This can be applied to either files on S3 or on the local filesystem.
The files to be validated are specified via s3fs.glob for S3 (see https://s3fs.readthedocs.io/en/latest/) and glob.glob
for local files (see https://docs.python.org/3/library/glob.html).
### Check number of CSVs in a given path
```python
from dativa.tools import FileValidation
# ensure there are between 10 and 100 CSVs in your target folder
# this command ignores other file extensions (e.g. .tsv files) as they aren't picked up by the glob pattern
fv = FileValidation(file_count=(10, 100)) # between 10 and 100 bytes
# if validation is not met, raise an exception
fv.run_validator(path="s3://some-bucket/some-path",
glob_pattern="*.csv",
raise_exceptions=True)
```
### Check that a specific file was last modified on a specific date and is smaller than a given size
```python
from dativa.tools import FileValidation
fv = FileValidation(file_size=(None, 2*2**10), # 2 KB
timestamp=("2018-12-25", "2018-12-25"), # made on 25th Dec 2018
timestamp_format="%Y-%m-%d")
# if validation is not met, raise an exception
fv.run_validator(path="s3://some-bucket/some-path",
glob_pattern="some-specific-key.csv",
raise_exceptions=True)
```
### Return file which do not match a certain size and age range
```python
from dativa.tools import FileValidation
from datetime import datetime
fv = FileValidation(file_size=(10, None), # minimum file size of 10 bytes
# no minimum time, earliest files made today
timestamp=(None, datetime.utcnow().strftime("%Y-%m-%d")),
timestamp_format="%Y-%m-%d")
# return files in dictionary
list_of_bad_files = fv.run_validator(path="/Users/your-name/absolute/file/path",
glob_pattern="*",
consider_correctly_formed_files=False)
```
### Local file paths must be _absolute_ paths rather than relative paths
```python
from dativa.tools import FileValidation
fv = FileValidation(file_size=(10, 10*2**20) # between 10 bytes and 10 GB
)
# return files which do not match the specified validation
list_of_bad_files = fv.run_validator(path="/Users/your-name/absolute/file/path",
glob_pattern="*",
consider_correctly_formed_files=False)
# return files which match the specified validation
list_of_good_files = fv.run_validator(path="/Users/your-name/absolute/file/path",
glob_pattern="*",
consider_correctly_formed_files=True)
```
### NOTE - both the path must not end with a '/' AND glob_pattern must not start with one
```python
from dativa.tools import FileValidation
fv = FileValidation(file_size=(10, None), # minimum file size of 10 bytes
)
# return files in dictionary
this_will_not_run = fv.run_validator(path="/Users/your-name/absolute/file/path/",
glob_pattern="/*",
consider_correctly_formed_files=False)
also_will_not_run = fv.run_validator(path="/Users/your-name/absolute/file/path/",
glob_pattern="*",
consider_correctly_formed_files=False)
again_will_not_run = fv.run_validator(path="/Users/your-name/absolute/file/path",
glob_pattern="/*",
consider_correctly_formed_files=False)
```
## Legacy classes
The modules in the dativatools namespace are legacy only and will be deprecated in future.
%package help
Summary: Development documents and examples for dativatools
Provides: python3-dativatools-doc
%description help
# Dativa Tools
Provides useful libraries for processing large data sets.
Developed by the team at [www.dativa.com](https://www.dativa.com) as we find them useful in our projects.
The key libraries included here are:
* dativa.tools.aws.S3Csv2Parquet - an AWS Glue based tool to transform CSV files to Parquet files
* dativa.tools.aws.AthenaClient - provide a simple wrapper to execute Athena queries and create tables. When combined
with the S3Csv2Parquet handler can automatically change Athena outputs to Parquet format
* dativa.tools.aws.PipelineClient - client to interact with the Pipeline API. When provided an api key, source S3
location, destination s3 location, and rules, it will clean the source file and post it to destination.
* dativa.tools.aws.S3Client - a wrapper for AWS's boto library for S3 enabling easier iteration over S3 files and
multiple deletions, as well as uploading multiple files
* dativa.tools.SQLClient - a wrapper for any PEP249 compliant database client with logging and splitting of queries
* dativa.tools.pandas.CSVHandler - improved CSV handling for Pandas
* dativa.tools.pandas.ParquetHandler - improved Parquet handling for pandas
* dativa.tools.pandas.Shapley - Shapley attribution modelling using pandas DataFrames
There are also some useful support functions for Pandas date and time handling.
As well as a function to save data out in a format suitable for Athena.
## Installation
```
pip install dativatools
```
Note that Dativa Tools uses loose binding to required libraries and the required binaries are thus not automatically installed with the package and you can import classes and functions from dativa tools without the required libraries installed. An ImportError is only raised at runtime if you are looking to use a function that depends on another package that is not installed.
The required libraries are listed in requirements.txt and include:
* pyarror for ParquetHandler
* pandas for all of the pandas extensions
* awsretry and boto3 for any functions requiring AWS access
* s3fs for many functions using S3
* blist for Shapley
* pycryptodome for encrypting CSVs in CSVHandler
* chardet for sniffing encodings in CSVHandler
* requests for PipelineClient
## Description
### dativa.tools.aws.AthenaClient
An easy to use client for AWS Athena that will create tables from S3 buckets (using AWS Glue) and run queries against these tables. It support full customisation of SerDe and column names on table creation.
Examples:
#### Creating tables
The library creates a temporary Glue crawler which is deleted after use, and will also create the database if it does not exist.
```python
from dativa.tools.aws import AthenaClient
ac = AthenaClient("us-east-1", "my_athena_db")
ac.create_table(table_name='my_first_table',
crawler_target={'S3Targets': [
{'Path': 's3://my-bucket/table-data'}]}
)
# Create a table with a custom SerDe and column names, typical for CSV files
ac.create_table(table_name='comcast_visio_match',
crawler_target={'S3Targets': [
{'Path': 's3://my-bucket/table-data-2', 'Exclusions': ['**._manifest']}]},
serde='org.apache.hadoop.hive.serde2.OpenCSVSerde',
columns=[{'Name': 'id', 'Type': 'string'}, {
'Name': 'device_id', 'Type': 'string'}, {'Name': 'subscriber_id', 'Type': 'string'}]
)
```
#### Running queries
```python
from dativa.tools.aws import AthenaClient
ac = AthenaClient("us-east-1", "my_athena_db")
ac.add_query(sql="select * from table",
name="My first query",
output_location= "s3://my-bucket/query-location/")
ac.wait_for_completion()
```
#### Fetch results of query
```python
from dativa.tools.aws import AthenaClient
ac = AthenaClient("us-east-1", "my_athena_db")
query = ac.add_query(sql="select * from table",
name="My first query",
output_location= "s3://my-bucket/query-location/")
ac.wait_for_completion()
ac.get_query_result(query)
```
#### Running queries with the output in Parquet and create an Athena table
```python
from dativa.tools.aws import AthenaClient, S3Csv2Parquet
scp = S3Csv2Parquet(region="us-east-1",
template_location="s3://my-bucket/glue-template-path/")
ac = AthenaClient("us-east-1", "my_athena_db", s3_parquet=scp)
ac.add_query(sql="select * from table",
name="my query that outputs Parquet",
output_location="s3://my-bucket/query-location/",
parquet=True)
ac.wait_for_completion()
ac.create_table({'S3Targets': [{'Path': "s3://my-bucket/query-location/"}]},
table_name="query_location")
```
### dativa.tools.aws.S3Client
An easy to use client for AWS S3 that adds some functionality
Examples:
#### S3Location
Class that parses out an S3 location from a passed string. Subclass of `str`
so supports most string operations.
Also contains properties .bucket, .key, .path, .prefix and method .join()
* param s3_str: string representation of s3 location, accepts most common formats
```
eg:
- 's3://bucket/folder/file.txt'
- 'bucket/folder'
- 'http[s]://s3*.amazonaws.com/bucket-name/'
also accepts None if using `bucket` and `key` keyword
```
* param bucket: ignored if s3_str is not None. can specify only bucket for
bucket='mybucket' - 's3://mybucket/' or in conjuction with `key`
* param key: ignored if s3_str is not None. Bucket must be set.
bucket='mybucket', key='path/to/file' - 's3://mybucket/path/to/file'
* param ignore_double_slash: default False. If true allows s3 locations containing '//'
these are valid s3 paths, but typically result from mistaken joins
#### Batch deleting of files on S3
```python
from dativa.tools.aws import S3Client
# Delete all files in a folder
s3 = S3Client()
s3.delete_files(bucket="bucket_name", prefix="/delete-this-folder/")
# Delete only .csv.metadata files in a folder
s3 = S3Client()
s3.delete_files(bucket="bucket_name", prefix="/delete-this-folder/", suffix=".csv.metadata")
```
#### Copy files from folder in local filesystem to s3 bucket
```python
from dativa.tools.aws import S3Client
s3 = S3Client()
s3.put_folder(source="/home/user/my_folder", bucket="bucket_name", destination="backup/files")
# Copy all csv files from folder to s3
s3.put_folder(source="/home/user/my_folder", bucket="bucket_name", destination="backup/files", file_format="*.csv")
```
### dativa.tools.SQLClient
A SQL client that wraps any PEP249 compliant connection object and provides detailed logging and simple query execution.
It takes the following parameters when instantaited:
- db_connection - a PEP257 compatible database connection
- logger - the logger to use
- logging_level - the level at which to log most output
- log_query_text - whether to log all of the query text
- humour - if set to true output jokes to pass the time of day waiting for queries to complete
#### execute_query
Runs a query and ignores any output
Parameters:
- query - the query to run, either a SQL file or a SQL query
- parameters - a dict of parameters to substitute in the query
- replace - a dict or items to be replaced in the SQL text
- first_to_run - the index of the first query in a mult-command query to be executed
#### execute_query_to_df
Runs a query and returns the output of the final statement in a DataFrame.
Parameters:
- query - the query to run, either a SQL file or a SQL query
- parameters - a dict of parameters to substitute in the query
- replace - a dict or items to be replaced in the SQL text
- first_to_run - the index of the first query in a mult-command query to be executed
#### def execute_query_to_csv
Runs a query and writes the output of the final statement to a CSV file.
Parameters:
- query - the query to run, either a SQL file or a SQL query
- csvfile - the file name to save the query results to
- parameters - a dict of parameters to substitute in the query
- replace - a dict or items to be replaced in the SQL text
#### Example code
```python
import os
import psycopg2
from dativa.tools import SqlClient
# set up the SQL client from environment variables
sql = SqlClient(psycopg2.connect(
database=os.environ["DB_NAME"],
user=os.environ["USER"],
password=os.environ["PASSWORD"],
host=os.environ["HOST"],
port=os.environ["PORT"],
client_encoding="UTF-8",
connect_timeout=10))
# create the full schedule table
df = sql.execute_query_to_df(query="sql/my_query.sql",
parameters={"start_date": "2018-01-01",
"end_date": "2018-02-01"})
```
### dativa.tools.log_to_stdout
A convenience function to redirect a specific logger and its children to stdout
```python
import logging
from dativa.tools import log_to_stdout
log_to_stdout("dativa.tools", logging.DEBUG)
```
### dativa.tools.pandas.CSVHandler
A wrapper for pandas CSV handling to read and write dataframes
that is provided in pandas with consistent CSV parameters and
sniffing the CSV parameters automatically.
Includes reading a CSV into a dataframe, and writing it out to a string.
#### Parameters
- base_path: the base path for any CSV file read, if passed as a string
- detect_parameters: whether the encoding of the CSV file should be automatically detected
- encoding: the encoding of the CSV files, defaults to UTF-8
- delimiter: the delimeter used in the CSV, defaults to ,
- header: the index of the header row, or -1 if there is no header
- skiprows: the number of rows at the beginning of file to skip
- quotechar: the quoting character to use, defaults to ""
- include_index: specifies whether the index should be written out, default to False
- compression: specifies whether the data should be compressed, default to 'infer', current support for writing out gzip and zip compressed files
- nan_values: an array of possible NaN values, the first of which is used when writign out, defaults to None
- line_terminator: the line terminator to be used
- quoting: the level of quoting, defaults to QUOTE_MINIMAL
- decimal: the decimal character, defaults to '.'
- chunksize: if specified the CSV is written out in chunks
- aes_key: bytes, allowable lengths are 16, 24, 32
- zipfile_compression: the type of zip compressions to use, default to ZIP_DEFLATED
for decrypting and encrypting CSVs when passing to a dataframe, this uses AES CFB encryption via Pycryptodome
- aes_iv: bytes, must have length of 16
the initialization vector for the AES CFB encryption via Pycryptodome. If aes_key is specified and this is
not, it will auto-generate an iv and prefix it to the encrypted bytes.
#### load_df
Opens a CSV file using the specified configuration for the class and raises an exception if the encoding is unparseable.
Detects if base_path is an S3 location and loads data from there if required.
Parameters:
- file - File path. Should begin with 's3://' to load from S3 location.
- force_dtype - Force data type for data or columns, defaults to None
- kwargs - any of the keyword arguments used to create the class can also be passed to load_df
Returns:
- dataframe
#### save_df
Writes a formatted string from a dataframe using the specified configuration for the class the file. Detects if base_path is an S3 location and saves data there if required.
Parameters:
- df - Dataframe to save
- file - File path. Should begin with 's3://' to save to an S3 location.
- kwargs - any of the keyword arguments used to create the class can also be passed to save_df
#### df_to_string
Returns a formatted string from a dataframe using the specified configuration for the class.
Parameters:
- df - Dataframe to convert to string
- kwargs - any of the keyword arguments used to create the class can also be passed to df_to_string
Returns:
- string
#### Example code
```python
from dativa.tools.pandas import CSVHandler
# Create the CSV handler
csv = CSVHandler(base_path='s3://my-bucket-name/')
# Load a file
df = csv.load_df('my-file-name.csv')
# Create a string
str_df = csv.df_to_string(df)
# Save a file
csv.save_df(df, 'another-path/another-file-name.csv')
```
### Support functions for Pandas
* dativa.tools.pandas.is_numeric - a function to check whether a series or string is numeric
* dativa.tools.pandas.string_to_datetime - a function to convert a string, or series of strings to a datetime, with a strptime date format that supports nanoseconds
* dativa.tools.pandas.datetime_to_string - a function to convert a datetime, or a series of datetimes to a string, with a strptime date format that supports nanoseconds
* dativa.tools.pandas.format_string_is_valid - a function to confirm whether a strptime format string returns a date
* dativa.tools.pandas.get_column_name - a function to return the name of a column from a passed column name or index.
* dativa.tools.pandas.get_unique_column_name - a function to return a unique column name when adding new columns to a DataFrame
### dativa.tools.pandas.ParquetHandler
ParquetHandler class, specify path of parquet file,
and get pandas dataframe for analysis and modification.
* param base_path : The base location where the parquet_files are stored.
* type base_path : str
* param row_group_size : The size of the row groups while writing out the parquet file.
* type row_group_size : int
* param use_dictionary : Specify whether to use boolean encoding or not
* type use_dictionary : bool
* param use_deprecated_int96_timestamps : Write nanosecond resolution timestamps to INT96 Parquet format.
* type use_deprecated_int96_timestamps : bool
* param coerce_timestamps : Cast timestamps a particular resolution. Valid values: {None, 'ms', 'us'}
* type coerce_timestamps : str
* param compression : Specify the compression codec.
* type compression : str
```python
from dativa.tools.pandas import CSVHandler, ParquetHandler
# Read a parquet file
pq_obj = ParquetHandler()
df_parquet = pq_obj.load_df('data.parquet')
# save a csv_file to parquet
csv = CSVHandler(csv_delimiter=",")
df = csv.load_df('emails.csv')
pq_obj = ParquetHandler()
pq_obj.save_df(df, 'emails.parquet')
```
#### save_df
Saves the df as parquet to the file path given to it, similar to CSVHandler save_df.
##### Parameters
* param df : A pandas dataframe to write to original file location of parquet file.
* type df : pandas.DataFrame
* param row_group_size : The size of the row groups while writing out the parquet file.
* type row_group_size : int
* param use_deprecated_int96_timestamps : Write nanosecond resolution timestamps to INT96 Parquet format.
* type use_deprecated_int96_timestamps : bool
* param coerce_timestamps : Cast timestamps a particular resolution. Valid values: {None, 'ms', 'us'}
* type coerce_timestamps : str
* param compression : Specify the compression codec.
* type compression : str
* param schema : Used to set the desired schema for pyarrow table, if not provided schema is inferred
* type schema : pyarrow.lib.Schema or dict
* param infer_other_dtypes : Used when schema is specified. When True, if there are columns not specified in schema then their dtypes are inferred. When false, if there are columns not specified in schema then raise an error. Default behaviour is False.
* type infer_other_dtypes : bool
For convenience, ParquetHandler allows a python dict to be passed to the schema argument. The dict should have column names as the keys and desired types as the values. A dict or schema for only some of the columns may be passed, the types for the rest of the columns will then be inferred. The types are inferred by looking at the types for the non-null values in each column. An error is raised if there multiple types in each column.
Example code of how to pass a dict to the schema argument. In this example, only columns `col1` and `col2` are given types, any other columns will have their types inferred.
```python
pq_obj = ParquetHandler()
dict_schema = {'col1': str, 'col3': int}
pq_obj.save_df(test_df, new_file_path, schema=dict_schema)
```
Example code on how to generate pyarrow.lib.schema objects and how to pass the schema to save_df.
```python
pq_obj = ParquetHandler()
fields = [
pa.field("col1", pa.int64()),
pa.field("col2", pa.string())]
my_schema = pa.schema(fields)
pq_obj.save_df(test_df, new_file_path, schema=my_schema)
```
### dativa.tools.pandas athena_partition
A function to handle partitioning and saving a pandas DataFrame in a format compatible with athena. Using one or more specified column from the DataFrame being saved.
##### Parameters
* param df : The data frame to be partitioned
* type df : pandas.DataFrame
* param partition_categories : The columns to partition the data on
* type partition_categories : list
* param file_handler : The appropriate file handler to save the data, currently tested for dativa CSVHandler and ParquetHandler support, other handlers are untested
* type file_handler : obj
* param suffix : The extension the file should be saved with, .csv for csv, and .parquet for parquet
* type suffix : str
* param columns_to_keep : Columns to keep from the data frame, if not supplied default behaviour is to keep all columns
* type columns_to_keep : list
* param date_time_format : To minimise chances of overwrite the saved files contain the date time of when this function was called, this param specifies the format of the date time in strftime format
* type date_time_format : str
* param name : If provided all files filename will start with this
* type name : str
* param partition_string : Allows formatting folder names, will be dependant on how many partition categories there are, defaults to creating folders and sub folders in order of partitioning
* type partition_string : str
* param partition_dtypes : Can pass argument to set the dtype of a particular column, to ensure proper grouping, also doubles to checking the column doesnt contain values of an unexpected dtype
* type partition_dtypes : list
* param kwargs : Any additional key word arguments to be passed to the handler
* return : Returns a full list of all file paths created, doesnt return base path as part of this
### dativa.tools.aws import S3Csv2Parquet
An easy to use module for converting csv files on s3 to praquet using aws glue jobs.
For S3 access and glue access suitable credentials should be available in '~/.aws/credentials' or the AWS_ACCESS_KEY_ID/AWS_SECRET_ACCESS_KEY environment variables.
#### S3Csv2Parquet
Parameters:
- region - str,
AWS region in which glue job is to be run
- template_location - str,
S3 bucket Folder in which template scripts are
located or need to be copied.
format s3://bucketname/folder/
it is not clear to those unfamiliar with glue what this is.
- glue_role - str,
Name of the glue role which need to be assigned to the
Glue Job.
- max_jobs - int, default 5
Maximum number of jobs the can run concurrently in the queue
- retry_limit - int, default 3
Maximum number of retries allowed per job on failure
#### convert
Parameters:
- csv_path - str or list of str for multiple files,
s3 location of the csv file
format s3://bucketname/folder/file.csv
Pass a list for multiple files
- output_folder - str, default set to folder where csv files are located
s3 location at which paraquet file should be copied
format s3://bucketname/folder
- schema - list of tuples,
If not specified schema is inferred from the file
format [(column1, datatype), (column2, datatype)]
Supported datatypes are boolean, double, float, integer,
long, null, short, string
- name - str, default 'parquet_csv_convert'
Name to be assigned to glue job
- allocated_capacity - int, default 2
The number of AWS Glue data processing units (DPUs) to allocate to this Job.
From 2 to 100 DPUs can be allocated
- delete_csv - boolean, default False
If set source csv files are deleted post successful completion of job
- separator - character, default ','
Delimiter character in csv files
- with_header- int, default 1
Specifies whether to treat the first line as a header
Can take values 0 or 1
- compression - str, default None
If not specified compression is not applied.
Can take values snappy, gzip, and lzo
- partition_by - list of str, default None
List containing columns to partition data by
- mode - str, default append
Options include:
overwrite: will remove data from output_folder before writing out
converted file.
append: Will write out to output_folder without deleting existing
data.
ignore: Silently ignore this operation if data already exists.
#### Example
```python
from dativa.tools.aws import S3Csv2Parquet
# Initial setup
csv2parquet_obj = S3Csv2Parquet("us-east-1", "s3://my-bucket/templatefolder")
# Create/update a glue job to convert csv files and execute it
csv2parquet_obj.convert("s3://my-bucket/file_to_be_converted_1.csv")
csv2parquet_obj.convert("s3://my-bucket/file_to_be_converted_2.csv")
# Wait for completion of jobs
csv2parquet_obj.wait_for_completion()
```
### dativa.tools.pandas.Shapley
Shapley attribution of scores to members of sets.
See [medium](https://towardsdatascience.com/one-feature-attribution-method-to-supposedly-rule-them-all-shapley-values-f3e04534983d)
or [wiki](https://en.wikipedia.org/wiki/Shapley_value) for details on the math. The aim is to apportion scores between the members of a set
responsible for producing that score.
Takes two DataFrames as input, one containing impressions from campaigns and the other containing conversions.
eg. campaigns
|viewer_id|campaign_id|
| :----:|:-----:|
|20|B|
|19|B|
|12|B|
|6|A|
|17|B|
|12|B|
|8|B|
|3|A|
|18|A|
where a campaign_id might be a campaign that an individual has interacted with. Each viewer / campaign
pair is only considered once.
eg 2. conversions
|viewer_id|
|: --- :|
|14|
|12|
|2|
|3|
|11|
these are individuals that have converted. From this a conversion rate is calculated which is used as a score.
That score is apportioned among the campaigns.
Typically not all combinations of impressions are present (particularly in where there are lots of
campaigns being run). The missing combinations are assigned a default score, which might be an average conversion rate
or similar. This is passed to the class constructor as `default_score` and must be numeric.
### Example code
```python
s = Shapley(df_campaigns, df_conversions, 'viewer_id', 'campaign_id', default_score=0.01)
results = s.run()
```
## dativa.tools.FileValidation
A module to validate the files present in a given directory based on glob pattern matching. The
FileValidation class initialises and checks a set of rules for a file validation, this can then be run for various
paths and glob pattern matches via a method (run_validator). Validation is be based on
various properties - time last modified, size and the number of files which match criteria. Examples on how to use
the file validation are provided below.
FileValidation Arguments:
* timestamp: (tuple or str or None) strings for min and max time (str or None, str or None) in UTC. This is
read in with datetime.strptime, so must use compatible formats
* file_size: (tuple or int or None) min and max size in bytes (int or None, int or None), treats single int
as minimum
* file_count: (tuple or int or None) min and max file count, treats single int as minimum
* timestamp_format: (str) string for a valid timestamp, specified format for both max and min timestamp,
uses datetime.strptime, hence must be in compatible format.
run_validator Arguments:
* path: (str) path to the files - can either be a path for S3Location or an absolute local file path. CANNOT HAVE '/' AS THE FINAL CHARACTER.
* glob_pattern: (str) pattern of glob files to be examined. CANNOT HAVE '/' AS THE FIRST CHARACTER.
* consider_correctly_formed_files: (bool) if False, consider malformed files (which do not match validation) for the
file_count argument of FileValidation
* raise_exceptions: (bool) whether to raise exception when finding files which do not match validation criteria
### Example codes
The code can either return a list of files (either all which match the criteria or those which do not) or raise an
exception if any files fail the validation. This can be applied to either files on S3 or on the local filesystem.
The files to be validated are specified via s3fs.glob for S3 (see https://s3fs.readthedocs.io/en/latest/) and glob.glob
for local files (see https://docs.python.org/3/library/glob.html).
### Check number of CSVs in a given path
```python
from dativa.tools import FileValidation
# ensure there are between 10 and 100 CSVs in your target folder
# this command ignores other file extensions (e.g. .tsv files) as they aren't picked up by the glob pattern
fv = FileValidation(file_count=(10, 100)) # between 10 and 100 bytes
# if validation is not met, raise an exception
fv.run_validator(path="s3://some-bucket/some-path",
glob_pattern="*.csv",
raise_exceptions=True)
```
### Check that a specific file was last modified on a specific date and is smaller than a given size
```python
from dativa.tools import FileValidation
fv = FileValidation(file_size=(None, 2*2**10), # 2 KB
timestamp=("2018-12-25", "2018-12-25"), # made on 25th Dec 2018
timestamp_format="%Y-%m-%d")
# if validation is not met, raise an exception
fv.run_validator(path="s3://some-bucket/some-path",
glob_pattern="some-specific-key.csv",
raise_exceptions=True)
```
### Return file which do not match a certain size and age range
```python
from dativa.tools import FileValidation
from datetime import datetime
fv = FileValidation(file_size=(10, None), # minimum file size of 10 bytes
# no minimum time, earliest files made today
timestamp=(None, datetime.utcnow().strftime("%Y-%m-%d")),
timestamp_format="%Y-%m-%d")
# return files in dictionary
list_of_bad_files = fv.run_validator(path="/Users/your-name/absolute/file/path",
glob_pattern="*",
consider_correctly_formed_files=False)
```
### Local file paths must be _absolute_ paths rather than relative paths
```python
from dativa.tools import FileValidation
fv = FileValidation(file_size=(10, 10*2**20) # between 10 bytes and 10 GB
)
# return files which do not match the specified validation
list_of_bad_files = fv.run_validator(path="/Users/your-name/absolute/file/path",
glob_pattern="*",
consider_correctly_formed_files=False)
# return files which match the specified validation
list_of_good_files = fv.run_validator(path="/Users/your-name/absolute/file/path",
glob_pattern="*",
consider_correctly_formed_files=True)
```
### NOTE - both the path must not end with a '/' AND glob_pattern must not start with one
```python
from dativa.tools import FileValidation
fv = FileValidation(file_size=(10, None), # minimum file size of 10 bytes
)
# return files in dictionary
this_will_not_run = fv.run_validator(path="/Users/your-name/absolute/file/path/",
glob_pattern="/*",
consider_correctly_formed_files=False)
also_will_not_run = fv.run_validator(path="/Users/your-name/absolute/file/path/",
glob_pattern="*",
consider_correctly_formed_files=False)
again_will_not_run = fv.run_validator(path="/Users/your-name/absolute/file/path",
glob_pattern="/*",
consider_correctly_formed_files=False)
```
## Legacy classes
The modules in the dativatools namespace are legacy only and will be deprecated in future.
%prep
%autosetup -n dativatools-3.3.832
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-dativatools -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 3.3.832-1
- Package Spec generated
|