summaryrefslogtreecommitdiff
path: root/python-datumaro.spec
diff options
context:
space:
mode:
Diffstat (limited to 'python-datumaro.spec')
-rw-r--r--python-datumaro.spec402
1 files changed, 402 insertions, 0 deletions
diff --git a/python-datumaro.spec b/python-datumaro.spec
new file mode 100644
index 0000000..ef9185f
--- /dev/null
+++ b/python-datumaro.spec
@@ -0,0 +1,402 @@
+%global _empty_manifest_terminate_build 0
+Name: python-datumaro
+Version: 1.2.1
+Release: 1
+Summary: Dataset Management Framework (Datumaro)
+License: MIT License
+URL: https://github.com/openvinotoolkit/datumaro
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/31/63/1ef1d9e53b19a459827c8ef5208d91afc88cfdd722329b331a5c76c51fd2/datumaro-1.2.1.tar.gz
+BuildArch: noarch
+
+
+%description
+# Dataset Management Framework (Datumaro)
+
+[![Build status](https://github.com/openvinotoolkit/datumaro/actions/workflows/health_check.yml/badge.svg)](https://github.com/openvinotoolkit/datumaro/actions/workflows/health_check.yml)
+[![codecov](https://codecov.io/gh/openvinotoolkit/datumaro/branch/develop/graph/badge.svg?token=FG25VU096Q)](https://codecov.io/gh/openvinotoolkit/datumaro)
+
+A framework and CLI tool to build, transform, and analyze datasets.
+
+<!--lint disable fenced-code-flag-->
+```
+VOC dataset ---> Annotation tool
+ + /
+COCO dataset -----> Datumaro ---> dataset ------> Model training
+ + \
+CVAT annotations ---> Publication, statistics etc.
+```
+<!--lint enable fenced-code-flag-->
+
+- [Getting started](https://openvinotoolkit.github.io/datumaro/docs/getting_started)
+- [Features](#features)
+- [User manual](https://openvinotoolkit.github.io/datumaro/docs/user-manual)
+- [Developer manual](https://openvinotoolkit.github.io/datumaro/api)
+- [Contributing](#contributing)
+
+## Features
+
+[(Back to top)](#dataset-management-framework-datumaro)
+
+- Dataset reading, writing, conversion in any direction.
+ - [CIFAR-10/100](https://www.cs.toronto.edu/~kriz/cifar.html) (`classification`)
+ - [Cityscapes](https://www.cityscapes-dataset.com/)
+ - [COCO](http://cocodataset.org/#format-data) (`image_info`, `instances`, `person_keypoints`,
+ `captions`, `labels`, `panoptic`, `stuff`)
+ - [CVAT](https://openvinotoolkit.github.io/cvat/docs/manual/advanced/xml_format)
+ - [ImageNet](http://image-net.org/)
+ - [Kitti](http://www.cvlibs.net/datasets/kitti/index.php) (`segmentation`, `detection`,
+ `3D raw` / `velodyne points`)
+ - [LabelMe](http://labelme.csail.mit.edu/Release3.0)
+ - [LFW](http://vis-www.cs.umass.edu/lfw/) (`classification`, `person re-identification`,
+ `landmarks`)
+ - [MNIST](http://yann.lecun.com/exdb/mnist/) (`classification`)
+ - [Open Images](https://storage.googleapis.com/openimages/web/download.html)
+ - [PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/htmldoc/index.html)
+ (`classification`, `detection`, `segmentation`, `action_classification`, `person_layout`)
+ - [TF Detection API](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/using_your_own_dataset.md)
+ (`bboxes`, `masks`)
+ - [YOLO](https://github.com/AlexeyAB/darknet#how-to-train-pascal-voc-data) (`bboxes`)
+
+ Other formats and documentation for them can be found [here](https://openvinotoolkit.github.io/datumaro/docs/user-manual/supported_formats).
+- Dataset building
+ - Merging multiple datasets into one
+ - Dataset filtering by a custom criteria:
+ - remove polygons of a certain class
+ - remove images without annotations of a specific class
+ - remove `occluded` annotations from images
+ - keep only vertically-oriented images
+ - remove small area bounding boxes from annotations
+ - Annotation conversions, for instance:
+ - polygons to instance masks and vice-versa
+ - apply a custom colormap for mask annotations
+ - rename or remove dataset labels
+ - Splitting a dataset into multiple subsets like `train`, `val`, and `test`:
+ - random split
+ - task-specific splits based on annotations,
+ which keep initial label and attribute distributions
+ - for classification task, based on labels
+ - for detection task, based on bboxes
+ - for re-identification task, based on labels,
+ avoiding having same IDs in training and test splits
+ - Sampling a dataset
+ - analyzes inference result from the given dataset
+ and selects the ‘best’ and the ‘least amount of’ samples for annotation.
+ - Select the sample that best suits model training.
+ - sampling with Entropy based algorithm
+- Dataset quality checking
+ - Simple checking for errors
+ - Comparison with model inference
+ - Merging and comparison of multiple datasets
+ - Annotation validation based on the task type(classification, etc)
+- Dataset comparison
+- Dataset statistics (image mean and std, annotation statistics)
+- Model integration
+ - Inference (OpenVINO, Caffe, PyTorch, TensorFlow, MxNet, etc.)
+ - Explainable AI ([RISE algorithm](https://arxiv.org/abs/1806.07421))
+ - RISE for classification
+ - RISE for object detection
+
+> Check
+ [the design document](https://openvinotoolkit.github.io/datumaro/docs/design)
+ for a full list of features.
+> Check
+ [the user manual](https://openvinotoolkit.github.io/datumaro/docs/user-manual)
+ for usage instructions.
+
+## Contributing
+
+[(Back to top)](#dataset-management-framework-datumaro)
+
+Feel free to
+[open an Issue](https://github.com/openvinotoolkit/datumaro/issues/new), if you
+think something needs to be changed. You are welcome to participate in
+development, instructions are available in our
+[contribution guide](https://openvinotoolkit.github.io/datumaro/docs/contributing).
+
+## Telemetry data collection note
+
+The [OpenVINO™ telemetry library](https://github.com/openvinotoolkit/telemetry/)
+is used to collect basic information about Datumaro usage.
+
+To enable/disable telemetry data collection please see the
+[guide](https://openvinotoolkit.github.io/datumaro/docs/user-manual/how_to_control_tm_data_collection/).
+
+
+%package -n python3-datumaro
+Summary: Dataset Management Framework (Datumaro)
+Provides: python-datumaro
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-datumaro
+# Dataset Management Framework (Datumaro)
+
+[![Build status](https://github.com/openvinotoolkit/datumaro/actions/workflows/health_check.yml/badge.svg)](https://github.com/openvinotoolkit/datumaro/actions/workflows/health_check.yml)
+[![codecov](https://codecov.io/gh/openvinotoolkit/datumaro/branch/develop/graph/badge.svg?token=FG25VU096Q)](https://codecov.io/gh/openvinotoolkit/datumaro)
+
+A framework and CLI tool to build, transform, and analyze datasets.
+
+<!--lint disable fenced-code-flag-->
+```
+VOC dataset ---> Annotation tool
+ + /
+COCO dataset -----> Datumaro ---> dataset ------> Model training
+ + \
+CVAT annotations ---> Publication, statistics etc.
+```
+<!--lint enable fenced-code-flag-->
+
+- [Getting started](https://openvinotoolkit.github.io/datumaro/docs/getting_started)
+- [Features](#features)
+- [User manual](https://openvinotoolkit.github.io/datumaro/docs/user-manual)
+- [Developer manual](https://openvinotoolkit.github.io/datumaro/api)
+- [Contributing](#contributing)
+
+## Features
+
+[(Back to top)](#dataset-management-framework-datumaro)
+
+- Dataset reading, writing, conversion in any direction.
+ - [CIFAR-10/100](https://www.cs.toronto.edu/~kriz/cifar.html) (`classification`)
+ - [Cityscapes](https://www.cityscapes-dataset.com/)
+ - [COCO](http://cocodataset.org/#format-data) (`image_info`, `instances`, `person_keypoints`,
+ `captions`, `labels`, `panoptic`, `stuff`)
+ - [CVAT](https://openvinotoolkit.github.io/cvat/docs/manual/advanced/xml_format)
+ - [ImageNet](http://image-net.org/)
+ - [Kitti](http://www.cvlibs.net/datasets/kitti/index.php) (`segmentation`, `detection`,
+ `3D raw` / `velodyne points`)
+ - [LabelMe](http://labelme.csail.mit.edu/Release3.0)
+ - [LFW](http://vis-www.cs.umass.edu/lfw/) (`classification`, `person re-identification`,
+ `landmarks`)
+ - [MNIST](http://yann.lecun.com/exdb/mnist/) (`classification`)
+ - [Open Images](https://storage.googleapis.com/openimages/web/download.html)
+ - [PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/htmldoc/index.html)
+ (`classification`, `detection`, `segmentation`, `action_classification`, `person_layout`)
+ - [TF Detection API](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/using_your_own_dataset.md)
+ (`bboxes`, `masks`)
+ - [YOLO](https://github.com/AlexeyAB/darknet#how-to-train-pascal-voc-data) (`bboxes`)
+
+ Other formats and documentation for them can be found [here](https://openvinotoolkit.github.io/datumaro/docs/user-manual/supported_formats).
+- Dataset building
+ - Merging multiple datasets into one
+ - Dataset filtering by a custom criteria:
+ - remove polygons of a certain class
+ - remove images without annotations of a specific class
+ - remove `occluded` annotations from images
+ - keep only vertically-oriented images
+ - remove small area bounding boxes from annotations
+ - Annotation conversions, for instance:
+ - polygons to instance masks and vice-versa
+ - apply a custom colormap for mask annotations
+ - rename or remove dataset labels
+ - Splitting a dataset into multiple subsets like `train`, `val`, and `test`:
+ - random split
+ - task-specific splits based on annotations,
+ which keep initial label and attribute distributions
+ - for classification task, based on labels
+ - for detection task, based on bboxes
+ - for re-identification task, based on labels,
+ avoiding having same IDs in training and test splits
+ - Sampling a dataset
+ - analyzes inference result from the given dataset
+ and selects the ‘best’ and the ‘least amount of’ samples for annotation.
+ - Select the sample that best suits model training.
+ - sampling with Entropy based algorithm
+- Dataset quality checking
+ - Simple checking for errors
+ - Comparison with model inference
+ - Merging and comparison of multiple datasets
+ - Annotation validation based on the task type(classification, etc)
+- Dataset comparison
+- Dataset statistics (image mean and std, annotation statistics)
+- Model integration
+ - Inference (OpenVINO, Caffe, PyTorch, TensorFlow, MxNet, etc.)
+ - Explainable AI ([RISE algorithm](https://arxiv.org/abs/1806.07421))
+ - RISE for classification
+ - RISE for object detection
+
+> Check
+ [the design document](https://openvinotoolkit.github.io/datumaro/docs/design)
+ for a full list of features.
+> Check
+ [the user manual](https://openvinotoolkit.github.io/datumaro/docs/user-manual)
+ for usage instructions.
+
+## Contributing
+
+[(Back to top)](#dataset-management-framework-datumaro)
+
+Feel free to
+[open an Issue](https://github.com/openvinotoolkit/datumaro/issues/new), if you
+think something needs to be changed. You are welcome to participate in
+development, instructions are available in our
+[contribution guide](https://openvinotoolkit.github.io/datumaro/docs/contributing).
+
+## Telemetry data collection note
+
+The [OpenVINO™ telemetry library](https://github.com/openvinotoolkit/telemetry/)
+is used to collect basic information about Datumaro usage.
+
+To enable/disable telemetry data collection please see the
+[guide](https://openvinotoolkit.github.io/datumaro/docs/user-manual/how_to_control_tm_data_collection/).
+
+
+%package help
+Summary: Development documents and examples for datumaro
+Provides: python3-datumaro-doc
+%description help
+# Dataset Management Framework (Datumaro)
+
+[![Build status](https://github.com/openvinotoolkit/datumaro/actions/workflows/health_check.yml/badge.svg)](https://github.com/openvinotoolkit/datumaro/actions/workflows/health_check.yml)
+[![codecov](https://codecov.io/gh/openvinotoolkit/datumaro/branch/develop/graph/badge.svg?token=FG25VU096Q)](https://codecov.io/gh/openvinotoolkit/datumaro)
+
+A framework and CLI tool to build, transform, and analyze datasets.
+
+<!--lint disable fenced-code-flag-->
+```
+VOC dataset ---> Annotation tool
+ + /
+COCO dataset -----> Datumaro ---> dataset ------> Model training
+ + \
+CVAT annotations ---> Publication, statistics etc.
+```
+<!--lint enable fenced-code-flag-->
+
+- [Getting started](https://openvinotoolkit.github.io/datumaro/docs/getting_started)
+- [Features](#features)
+- [User manual](https://openvinotoolkit.github.io/datumaro/docs/user-manual)
+- [Developer manual](https://openvinotoolkit.github.io/datumaro/api)
+- [Contributing](#contributing)
+
+## Features
+
+[(Back to top)](#dataset-management-framework-datumaro)
+
+- Dataset reading, writing, conversion in any direction.
+ - [CIFAR-10/100](https://www.cs.toronto.edu/~kriz/cifar.html) (`classification`)
+ - [Cityscapes](https://www.cityscapes-dataset.com/)
+ - [COCO](http://cocodataset.org/#format-data) (`image_info`, `instances`, `person_keypoints`,
+ `captions`, `labels`, `panoptic`, `stuff`)
+ - [CVAT](https://openvinotoolkit.github.io/cvat/docs/manual/advanced/xml_format)
+ - [ImageNet](http://image-net.org/)
+ - [Kitti](http://www.cvlibs.net/datasets/kitti/index.php) (`segmentation`, `detection`,
+ `3D raw` / `velodyne points`)
+ - [LabelMe](http://labelme.csail.mit.edu/Release3.0)
+ - [LFW](http://vis-www.cs.umass.edu/lfw/) (`classification`, `person re-identification`,
+ `landmarks`)
+ - [MNIST](http://yann.lecun.com/exdb/mnist/) (`classification`)
+ - [Open Images](https://storage.googleapis.com/openimages/web/download.html)
+ - [PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/htmldoc/index.html)
+ (`classification`, `detection`, `segmentation`, `action_classification`, `person_layout`)
+ - [TF Detection API](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/using_your_own_dataset.md)
+ (`bboxes`, `masks`)
+ - [YOLO](https://github.com/AlexeyAB/darknet#how-to-train-pascal-voc-data) (`bboxes`)
+
+ Other formats and documentation for them can be found [here](https://openvinotoolkit.github.io/datumaro/docs/user-manual/supported_formats).
+- Dataset building
+ - Merging multiple datasets into one
+ - Dataset filtering by a custom criteria:
+ - remove polygons of a certain class
+ - remove images without annotations of a specific class
+ - remove `occluded` annotations from images
+ - keep only vertically-oriented images
+ - remove small area bounding boxes from annotations
+ - Annotation conversions, for instance:
+ - polygons to instance masks and vice-versa
+ - apply a custom colormap for mask annotations
+ - rename or remove dataset labels
+ - Splitting a dataset into multiple subsets like `train`, `val`, and `test`:
+ - random split
+ - task-specific splits based on annotations,
+ which keep initial label and attribute distributions
+ - for classification task, based on labels
+ - for detection task, based on bboxes
+ - for re-identification task, based on labels,
+ avoiding having same IDs in training and test splits
+ - Sampling a dataset
+ - analyzes inference result from the given dataset
+ and selects the ‘best’ and the ‘least amount of’ samples for annotation.
+ - Select the sample that best suits model training.
+ - sampling with Entropy based algorithm
+- Dataset quality checking
+ - Simple checking for errors
+ - Comparison with model inference
+ - Merging and comparison of multiple datasets
+ - Annotation validation based on the task type(classification, etc)
+- Dataset comparison
+- Dataset statistics (image mean and std, annotation statistics)
+- Model integration
+ - Inference (OpenVINO, Caffe, PyTorch, TensorFlow, MxNet, etc.)
+ - Explainable AI ([RISE algorithm](https://arxiv.org/abs/1806.07421))
+ - RISE for classification
+ - RISE for object detection
+
+> Check
+ [the design document](https://openvinotoolkit.github.io/datumaro/docs/design)
+ for a full list of features.
+> Check
+ [the user manual](https://openvinotoolkit.github.io/datumaro/docs/user-manual)
+ for usage instructions.
+
+## Contributing
+
+[(Back to top)](#dataset-management-framework-datumaro)
+
+Feel free to
+[open an Issue](https://github.com/openvinotoolkit/datumaro/issues/new), if you
+think something needs to be changed. You are welcome to participate in
+development, instructions are available in our
+[contribution guide](https://openvinotoolkit.github.io/datumaro/docs/contributing).
+
+## Telemetry data collection note
+
+The [OpenVINO™ telemetry library](https://github.com/openvinotoolkit/telemetry/)
+is used to collect basic information about Datumaro usage.
+
+To enable/disable telemetry data collection please see the
+[guide](https://openvinotoolkit.github.io/datumaro/docs/user-manual/how_to_control_tm_data_collection/).
+
+
+%prep
+%autosetup -n datumaro-1.2.1
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-datumaro -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.2.1-1
+- Package Spec generated