summaryrefslogtreecommitdiff
path: root/python-datumaro.spec
blob: ef9185f8edeff97678483b878f95c3449bbae5cf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
%global _empty_manifest_terminate_build 0
Name:		python-datumaro
Version:	1.2.1
Release:	1
Summary:	Dataset Management Framework (Datumaro)
License:	MIT License
URL:		https://github.com/openvinotoolkit/datumaro
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/31/63/1ef1d9e53b19a459827c8ef5208d91afc88cfdd722329b331a5c76c51fd2/datumaro-1.2.1.tar.gz
BuildArch:	noarch


%description
# Dataset Management Framework (Datumaro)

[![Build status](https://github.com/openvinotoolkit/datumaro/actions/workflows/health_check.yml/badge.svg)](https://github.com/openvinotoolkit/datumaro/actions/workflows/health_check.yml)
[![codecov](https://codecov.io/gh/openvinotoolkit/datumaro/branch/develop/graph/badge.svg?token=FG25VU096Q)](https://codecov.io/gh/openvinotoolkit/datumaro)

A framework and CLI tool to build, transform, and analyze datasets.

<!--lint disable fenced-code-flag-->
```
VOC dataset                                  ---> Annotation tool
     +                                     /
COCO dataset -----> Datumaro ---> dataset ------> Model training
     +                                     \
CVAT annotations                             ---> Publication, statistics etc.
```
<!--lint enable fenced-code-flag-->

- [Getting started](https://openvinotoolkit.github.io/datumaro/docs/getting_started)
- [Features](#features)
- [User manual](https://openvinotoolkit.github.io/datumaro/docs/user-manual)
- [Developer manual](https://openvinotoolkit.github.io/datumaro/api)
- [Contributing](#contributing)

## Features

[(Back to top)](#dataset-management-framework-datumaro)

- Dataset reading, writing, conversion in any direction.
  - [CIFAR-10/100](https://www.cs.toronto.edu/~kriz/cifar.html) (`classification`)
  - [Cityscapes](https://www.cityscapes-dataset.com/)
  - [COCO](http://cocodataset.org/#format-data) (`image_info`, `instances`, `person_keypoints`,
    `captions`, `labels`, `panoptic`, `stuff`)
  - [CVAT](https://openvinotoolkit.github.io/cvat/docs/manual/advanced/xml_format)
  - [ImageNet](http://image-net.org/)
  - [Kitti](http://www.cvlibs.net/datasets/kitti/index.php) (`segmentation`, `detection`,
    `3D raw` / `velodyne points`)
  - [LabelMe](http://labelme.csail.mit.edu/Release3.0)
  - [LFW](http://vis-www.cs.umass.edu/lfw/) (`classification`, `person re-identification`,
    `landmarks`)
  - [MNIST](http://yann.lecun.com/exdb/mnist/) (`classification`)
  - [Open Images](https://storage.googleapis.com/openimages/web/download.html)
  - [PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/htmldoc/index.html)
    (`classification`, `detection`, `segmentation`, `action_classification`, `person_layout`)
  - [TF Detection API](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/using_your_own_dataset.md)
    (`bboxes`, `masks`)
  - [YOLO](https://github.com/AlexeyAB/darknet#how-to-train-pascal-voc-data) (`bboxes`)

  Other formats and documentation for them can be found [here](https://openvinotoolkit.github.io/datumaro/docs/user-manual/supported_formats).
- Dataset building
  - Merging multiple datasets into one
  - Dataset filtering by a custom criteria:
    - remove polygons of a certain class
    - remove images without annotations of a specific class
    - remove `occluded` annotations from images
    - keep only vertically-oriented images
    - remove small area bounding boxes from annotations
  - Annotation conversions, for instance:
    - polygons to instance masks and vice-versa
    - apply a custom colormap for mask annotations
    - rename or remove dataset labels
  - Splitting a dataset into multiple subsets like `train`, `val`, and `test`:
    - random split
    - task-specific splits based on annotations,
      which keep initial label and attribute distributions
      - for classification task, based on labels
      - for detection task, based on bboxes
      - for re-identification task, based on labels,
        avoiding having same IDs in training and test splits
  - Sampling a dataset
    - analyzes inference result from the given dataset
      and selects the ‘best’ and the ‘least amount of’ samples for annotation.
    - Select the sample that best suits model training.
      - sampling with Entropy based algorithm
- Dataset quality checking
  - Simple checking for errors
  - Comparison with model inference
  - Merging and comparison of multiple datasets
  - Annotation validation based on the task type(classification, etc)
- Dataset comparison
- Dataset statistics (image mean and std, annotation statistics)
- Model integration
  - Inference (OpenVINO, Caffe, PyTorch, TensorFlow, MxNet, etc.)
  - Explainable AI ([RISE algorithm](https://arxiv.org/abs/1806.07421))
    - RISE for classification
    - RISE for object detection

> Check
  [the design document](https://openvinotoolkit.github.io/datumaro/docs/design)
  for a full list of features.
> Check
  [the user manual](https://openvinotoolkit.github.io/datumaro/docs/user-manual)
  for usage instructions.

## Contributing

[(Back to top)](#dataset-management-framework-datumaro)

Feel free to
[open an Issue](https://github.com/openvinotoolkit/datumaro/issues/new), if you
think something needs to be changed. You are welcome to participate in
development, instructions are available in our
[contribution guide](https://openvinotoolkit.github.io/datumaro/docs/contributing).

## Telemetry data collection note

The [OpenVINO™ telemetry library](https://github.com/openvinotoolkit/telemetry/)
is used to collect basic information about Datumaro usage.

To enable/disable telemetry data collection please see the
[guide](https://openvinotoolkit.github.io/datumaro/docs/user-manual/how_to_control_tm_data_collection/).


%package -n python3-datumaro
Summary:	Dataset Management Framework (Datumaro)
Provides:	python-datumaro
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-datumaro
# Dataset Management Framework (Datumaro)

[![Build status](https://github.com/openvinotoolkit/datumaro/actions/workflows/health_check.yml/badge.svg)](https://github.com/openvinotoolkit/datumaro/actions/workflows/health_check.yml)
[![codecov](https://codecov.io/gh/openvinotoolkit/datumaro/branch/develop/graph/badge.svg?token=FG25VU096Q)](https://codecov.io/gh/openvinotoolkit/datumaro)

A framework and CLI tool to build, transform, and analyze datasets.

<!--lint disable fenced-code-flag-->
```
VOC dataset                                  ---> Annotation tool
     +                                     /
COCO dataset -----> Datumaro ---> dataset ------> Model training
     +                                     \
CVAT annotations                             ---> Publication, statistics etc.
```
<!--lint enable fenced-code-flag-->

- [Getting started](https://openvinotoolkit.github.io/datumaro/docs/getting_started)
- [Features](#features)
- [User manual](https://openvinotoolkit.github.io/datumaro/docs/user-manual)
- [Developer manual](https://openvinotoolkit.github.io/datumaro/api)
- [Contributing](#contributing)

## Features

[(Back to top)](#dataset-management-framework-datumaro)

- Dataset reading, writing, conversion in any direction.
  - [CIFAR-10/100](https://www.cs.toronto.edu/~kriz/cifar.html) (`classification`)
  - [Cityscapes](https://www.cityscapes-dataset.com/)
  - [COCO](http://cocodataset.org/#format-data) (`image_info`, `instances`, `person_keypoints`,
    `captions`, `labels`, `panoptic`, `stuff`)
  - [CVAT](https://openvinotoolkit.github.io/cvat/docs/manual/advanced/xml_format)
  - [ImageNet](http://image-net.org/)
  - [Kitti](http://www.cvlibs.net/datasets/kitti/index.php) (`segmentation`, `detection`,
    `3D raw` / `velodyne points`)
  - [LabelMe](http://labelme.csail.mit.edu/Release3.0)
  - [LFW](http://vis-www.cs.umass.edu/lfw/) (`classification`, `person re-identification`,
    `landmarks`)
  - [MNIST](http://yann.lecun.com/exdb/mnist/) (`classification`)
  - [Open Images](https://storage.googleapis.com/openimages/web/download.html)
  - [PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/htmldoc/index.html)
    (`classification`, `detection`, `segmentation`, `action_classification`, `person_layout`)
  - [TF Detection API](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/using_your_own_dataset.md)
    (`bboxes`, `masks`)
  - [YOLO](https://github.com/AlexeyAB/darknet#how-to-train-pascal-voc-data) (`bboxes`)

  Other formats and documentation for them can be found [here](https://openvinotoolkit.github.io/datumaro/docs/user-manual/supported_formats).
- Dataset building
  - Merging multiple datasets into one
  - Dataset filtering by a custom criteria:
    - remove polygons of a certain class
    - remove images without annotations of a specific class
    - remove `occluded` annotations from images
    - keep only vertically-oriented images
    - remove small area bounding boxes from annotations
  - Annotation conversions, for instance:
    - polygons to instance masks and vice-versa
    - apply a custom colormap for mask annotations
    - rename or remove dataset labels
  - Splitting a dataset into multiple subsets like `train`, `val`, and `test`:
    - random split
    - task-specific splits based on annotations,
      which keep initial label and attribute distributions
      - for classification task, based on labels
      - for detection task, based on bboxes
      - for re-identification task, based on labels,
        avoiding having same IDs in training and test splits
  - Sampling a dataset
    - analyzes inference result from the given dataset
      and selects the ‘best’ and the ‘least amount of’ samples for annotation.
    - Select the sample that best suits model training.
      - sampling with Entropy based algorithm
- Dataset quality checking
  - Simple checking for errors
  - Comparison with model inference
  - Merging and comparison of multiple datasets
  - Annotation validation based on the task type(classification, etc)
- Dataset comparison
- Dataset statistics (image mean and std, annotation statistics)
- Model integration
  - Inference (OpenVINO, Caffe, PyTorch, TensorFlow, MxNet, etc.)
  - Explainable AI ([RISE algorithm](https://arxiv.org/abs/1806.07421))
    - RISE for classification
    - RISE for object detection

> Check
  [the design document](https://openvinotoolkit.github.io/datumaro/docs/design)
  for a full list of features.
> Check
  [the user manual](https://openvinotoolkit.github.io/datumaro/docs/user-manual)
  for usage instructions.

## Contributing

[(Back to top)](#dataset-management-framework-datumaro)

Feel free to
[open an Issue](https://github.com/openvinotoolkit/datumaro/issues/new), if you
think something needs to be changed. You are welcome to participate in
development, instructions are available in our
[contribution guide](https://openvinotoolkit.github.io/datumaro/docs/contributing).

## Telemetry data collection note

The [OpenVINO™ telemetry library](https://github.com/openvinotoolkit/telemetry/)
is used to collect basic information about Datumaro usage.

To enable/disable telemetry data collection please see the
[guide](https://openvinotoolkit.github.io/datumaro/docs/user-manual/how_to_control_tm_data_collection/).


%package help
Summary:	Development documents and examples for datumaro
Provides:	python3-datumaro-doc
%description help
# Dataset Management Framework (Datumaro)

[![Build status](https://github.com/openvinotoolkit/datumaro/actions/workflows/health_check.yml/badge.svg)](https://github.com/openvinotoolkit/datumaro/actions/workflows/health_check.yml)
[![codecov](https://codecov.io/gh/openvinotoolkit/datumaro/branch/develop/graph/badge.svg?token=FG25VU096Q)](https://codecov.io/gh/openvinotoolkit/datumaro)

A framework and CLI tool to build, transform, and analyze datasets.

<!--lint disable fenced-code-flag-->
```
VOC dataset                                  ---> Annotation tool
     +                                     /
COCO dataset -----> Datumaro ---> dataset ------> Model training
     +                                     \
CVAT annotations                             ---> Publication, statistics etc.
```
<!--lint enable fenced-code-flag-->

- [Getting started](https://openvinotoolkit.github.io/datumaro/docs/getting_started)
- [Features](#features)
- [User manual](https://openvinotoolkit.github.io/datumaro/docs/user-manual)
- [Developer manual](https://openvinotoolkit.github.io/datumaro/api)
- [Contributing](#contributing)

## Features

[(Back to top)](#dataset-management-framework-datumaro)

- Dataset reading, writing, conversion in any direction.
  - [CIFAR-10/100](https://www.cs.toronto.edu/~kriz/cifar.html) (`classification`)
  - [Cityscapes](https://www.cityscapes-dataset.com/)
  - [COCO](http://cocodataset.org/#format-data) (`image_info`, `instances`, `person_keypoints`,
    `captions`, `labels`, `panoptic`, `stuff`)
  - [CVAT](https://openvinotoolkit.github.io/cvat/docs/manual/advanced/xml_format)
  - [ImageNet](http://image-net.org/)
  - [Kitti](http://www.cvlibs.net/datasets/kitti/index.php) (`segmentation`, `detection`,
    `3D raw` / `velodyne points`)
  - [LabelMe](http://labelme.csail.mit.edu/Release3.0)
  - [LFW](http://vis-www.cs.umass.edu/lfw/) (`classification`, `person re-identification`,
    `landmarks`)
  - [MNIST](http://yann.lecun.com/exdb/mnist/) (`classification`)
  - [Open Images](https://storage.googleapis.com/openimages/web/download.html)
  - [PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/htmldoc/index.html)
    (`classification`, `detection`, `segmentation`, `action_classification`, `person_layout`)
  - [TF Detection API](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/using_your_own_dataset.md)
    (`bboxes`, `masks`)
  - [YOLO](https://github.com/AlexeyAB/darknet#how-to-train-pascal-voc-data) (`bboxes`)

  Other formats and documentation for them can be found [here](https://openvinotoolkit.github.io/datumaro/docs/user-manual/supported_formats).
- Dataset building
  - Merging multiple datasets into one
  - Dataset filtering by a custom criteria:
    - remove polygons of a certain class
    - remove images without annotations of a specific class
    - remove `occluded` annotations from images
    - keep only vertically-oriented images
    - remove small area bounding boxes from annotations
  - Annotation conversions, for instance:
    - polygons to instance masks and vice-versa
    - apply a custom colormap for mask annotations
    - rename or remove dataset labels
  - Splitting a dataset into multiple subsets like `train`, `val`, and `test`:
    - random split
    - task-specific splits based on annotations,
      which keep initial label and attribute distributions
      - for classification task, based on labels
      - for detection task, based on bboxes
      - for re-identification task, based on labels,
        avoiding having same IDs in training and test splits
  - Sampling a dataset
    - analyzes inference result from the given dataset
      and selects the ‘best’ and the ‘least amount of’ samples for annotation.
    - Select the sample that best suits model training.
      - sampling with Entropy based algorithm
- Dataset quality checking
  - Simple checking for errors
  - Comparison with model inference
  - Merging and comparison of multiple datasets
  - Annotation validation based on the task type(classification, etc)
- Dataset comparison
- Dataset statistics (image mean and std, annotation statistics)
- Model integration
  - Inference (OpenVINO, Caffe, PyTorch, TensorFlow, MxNet, etc.)
  - Explainable AI ([RISE algorithm](https://arxiv.org/abs/1806.07421))
    - RISE for classification
    - RISE for object detection

> Check
  [the design document](https://openvinotoolkit.github.io/datumaro/docs/design)
  for a full list of features.
> Check
  [the user manual](https://openvinotoolkit.github.io/datumaro/docs/user-manual)
  for usage instructions.

## Contributing

[(Back to top)](#dataset-management-framework-datumaro)

Feel free to
[open an Issue](https://github.com/openvinotoolkit/datumaro/issues/new), if you
think something needs to be changed. You are welcome to participate in
development, instructions are available in our
[contribution guide](https://openvinotoolkit.github.io/datumaro/docs/contributing).

## Telemetry data collection note

The [OpenVINO™ telemetry library](https://github.com/openvinotoolkit/telemetry/)
is used to collect basic information about Datumaro usage.

To enable/disable telemetry data collection please see the
[guide](https://openvinotoolkit.github.io/datumaro/docs/user-manual/how_to_control_tm_data_collection/).


%prep
%autosetup -n datumaro-1.2.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-datumaro -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.2.1-1
- Package Spec generated