summaryrefslogtreecommitdiff
path: root/python-dbt-spark.spec
blob: fc0bfe4d98bf65fc4067e0167221143df02ba08e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
%global _empty_manifest_terminate_build 0
Name:		python-dbt-spark
Version:	1.4.1
Release:	1
Summary:	The Apache Spark adapter plugin for dbt
License:	Apache Software License
URL:		https://github.com/dbt-labs/dbt-spark
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/d1/02/2276924d6fc6d559aed653a566c86347765f01d31a2b1f45c13820a3e6f4/dbt-spark-1.4.1.tar.gz
BuildArch:	noarch

Requires:	python3-dbt-core
Requires:	python3-sqlparams
Requires:	python3-pyodbc
Requires:	python3-PyHive[hive]
Requires:	python3-thrift
Requires:	python3-pyodbc
Requires:	python3-PyHive[hive]
Requires:	python3-thrift
Requires:	python3-pyspark
Requires:	python3-pyspark

%description
<p align="center">
  <img src="https://raw.githubusercontent.com/dbt-labs/dbt/ec7dee39f793aa4f7dd3dae37282cc87664813e4/etc/dbt-logo-full.svg" alt="dbt logo" width="500"/>
</p>
<p align="center">
  <a href="https://github.com/dbt-labs/dbt-spark/actions/workflows/main.yml">
    <img src="https://github.com/dbt-labs/dbt-spark/actions/workflows/main.yml/badge.svg?event=push" alt="Unit Tests Badge"/>
  </a>
  <a href="https://github.com/dbt-labs/dbt-spark/actions/workflows/integration.yml">
    <img src="https://github.com/dbt-labs/dbt-spark/actions/workflows/integration.yml/badge.svg?event=push" alt="Integration Tests Badge"/>
  </a>
</p>

**[dbt](https://www.getdbt.com/)** enables data analysts and engineers to transform their data using the same practices that software engineers use to build applications.

dbt is the T in ELT. Organize, cleanse, denormalize, filter, rename, and pre-aggregate the raw data in your warehouse so that it's ready for analysis.

## dbt-spark

The `dbt-spark` package contains all of the code enabling dbt to work with Apache Spark and Databricks. For
more information, consult [the docs](https://docs.getdbt.com/docs/profile-spark).

## Getting started

- [Install dbt](https://docs.getdbt.com/docs/installation)
- Read the [introduction](https://docs.getdbt.com/docs/introduction/) and [viewpoint](https://docs.getdbt.com/docs/about/viewpoint/)

## Running locally
A `docker-compose` environment starts a Spark Thrift server and a Postgres database as a Hive Metastore backend.
Note: dbt-spark now supports Spark 3.1.1 (formerly on Spark 2.x).

The following command would start two docker containers
```
docker-compose up -d
```
It will take a bit of time for the instance to start, you can check the logs of the two containers.
If the instance doesn't start correctly, try the complete reset command listed below and then try start again.

Create a profile like this one:

```
spark_testing:
  target: local
  outputs:
    local:
      type: spark
      method: thrift
      host: 127.0.0.1
      port: 10000
      user: dbt
      schema: analytics
      connect_retries: 5
      connect_timeout: 60
      retry_all: true
```

Connecting to the local spark instance:

* The Spark UI should be available at [http://localhost:4040/sqlserver/](http://localhost:4040/sqlserver/)
* The endpoint for SQL-based testing is at `http://localhost:10000` and can be referenced with the Hive or Spark JDBC drivers using connection string `jdbc:hive2://localhost:10000` and default credentials `dbt`:`dbt`

Note that the Hive metastore data is persisted under `./.hive-metastore/`, and the Spark-produced data under `./.spark-warehouse/`. To completely reset you environment run the following:

```
docker-compose down
rm -rf ./.hive-metastore/
rm -rf ./.spark-warehouse/
```

### Reporting bugs and contributing code

-   Want to report a bug or request a feature? Let us know on [Slack](http://slack.getdbt.com/), or open [an issue](https://github.com/fishtown-analytics/dbt-spark/issues/new).

## Code of Conduct

Everyone interacting in the dbt project's codebases, issue trackers, chat rooms, and mailing lists is expected to follow the [PyPA Code of Conduct](https://www.pypa.io/en/latest/code-of-conduct/).

## Join the dbt Community

- Be part of the conversation in the [dbt Community Slack](http://community.getdbt.com/)
- Read more on the [dbt Community Discourse](https://discourse.getdbt.com)

## Reporting bugs and contributing code

- Want to report a bug or request a feature? Let us know on [Slack](http://community.getdbt.com/), or open [an issue](https://github.com/dbt-labs/dbt-spark/issues/new)
- Want to help us build dbt? Check out the [Contributing Guide](https://github.com/dbt-labs/dbt/blob/HEAD/CONTRIBUTING.md)

## Code of Conduct

Everyone interacting in the dbt project's codebases, issue trackers, chat rooms, and mailing lists is expected to follow the [dbt Code of Conduct](https://community.getdbt.com/code-of-conduct).


%package -n python3-dbt-spark
Summary:	The Apache Spark adapter plugin for dbt
Provides:	python-dbt-spark
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-dbt-spark
<p align="center">
  <img src="https://raw.githubusercontent.com/dbt-labs/dbt/ec7dee39f793aa4f7dd3dae37282cc87664813e4/etc/dbt-logo-full.svg" alt="dbt logo" width="500"/>
</p>
<p align="center">
  <a href="https://github.com/dbt-labs/dbt-spark/actions/workflows/main.yml">
    <img src="https://github.com/dbt-labs/dbt-spark/actions/workflows/main.yml/badge.svg?event=push" alt="Unit Tests Badge"/>
  </a>
  <a href="https://github.com/dbt-labs/dbt-spark/actions/workflows/integration.yml">
    <img src="https://github.com/dbt-labs/dbt-spark/actions/workflows/integration.yml/badge.svg?event=push" alt="Integration Tests Badge"/>
  </a>
</p>

**[dbt](https://www.getdbt.com/)** enables data analysts and engineers to transform their data using the same practices that software engineers use to build applications.

dbt is the T in ELT. Organize, cleanse, denormalize, filter, rename, and pre-aggregate the raw data in your warehouse so that it's ready for analysis.

## dbt-spark

The `dbt-spark` package contains all of the code enabling dbt to work with Apache Spark and Databricks. For
more information, consult [the docs](https://docs.getdbt.com/docs/profile-spark).

## Getting started

- [Install dbt](https://docs.getdbt.com/docs/installation)
- Read the [introduction](https://docs.getdbt.com/docs/introduction/) and [viewpoint](https://docs.getdbt.com/docs/about/viewpoint/)

## Running locally
A `docker-compose` environment starts a Spark Thrift server and a Postgres database as a Hive Metastore backend.
Note: dbt-spark now supports Spark 3.1.1 (formerly on Spark 2.x).

The following command would start two docker containers
```
docker-compose up -d
```
It will take a bit of time for the instance to start, you can check the logs of the two containers.
If the instance doesn't start correctly, try the complete reset command listed below and then try start again.

Create a profile like this one:

```
spark_testing:
  target: local
  outputs:
    local:
      type: spark
      method: thrift
      host: 127.0.0.1
      port: 10000
      user: dbt
      schema: analytics
      connect_retries: 5
      connect_timeout: 60
      retry_all: true
```

Connecting to the local spark instance:

* The Spark UI should be available at [http://localhost:4040/sqlserver/](http://localhost:4040/sqlserver/)
* The endpoint for SQL-based testing is at `http://localhost:10000` and can be referenced with the Hive or Spark JDBC drivers using connection string `jdbc:hive2://localhost:10000` and default credentials `dbt`:`dbt`

Note that the Hive metastore data is persisted under `./.hive-metastore/`, and the Spark-produced data under `./.spark-warehouse/`. To completely reset you environment run the following:

```
docker-compose down
rm -rf ./.hive-metastore/
rm -rf ./.spark-warehouse/
```

### Reporting bugs and contributing code

-   Want to report a bug or request a feature? Let us know on [Slack](http://slack.getdbt.com/), or open [an issue](https://github.com/fishtown-analytics/dbt-spark/issues/new).

## Code of Conduct

Everyone interacting in the dbt project's codebases, issue trackers, chat rooms, and mailing lists is expected to follow the [PyPA Code of Conduct](https://www.pypa.io/en/latest/code-of-conduct/).

## Join the dbt Community

- Be part of the conversation in the [dbt Community Slack](http://community.getdbt.com/)
- Read more on the [dbt Community Discourse](https://discourse.getdbt.com)

## Reporting bugs and contributing code

- Want to report a bug or request a feature? Let us know on [Slack](http://community.getdbt.com/), or open [an issue](https://github.com/dbt-labs/dbt-spark/issues/new)
- Want to help us build dbt? Check out the [Contributing Guide](https://github.com/dbt-labs/dbt/blob/HEAD/CONTRIBUTING.md)

## Code of Conduct

Everyone interacting in the dbt project's codebases, issue trackers, chat rooms, and mailing lists is expected to follow the [dbt Code of Conduct](https://community.getdbt.com/code-of-conduct).


%package help
Summary:	Development documents and examples for dbt-spark
Provides:	python3-dbt-spark-doc
%description help
<p align="center">
  <img src="https://raw.githubusercontent.com/dbt-labs/dbt/ec7dee39f793aa4f7dd3dae37282cc87664813e4/etc/dbt-logo-full.svg" alt="dbt logo" width="500"/>
</p>
<p align="center">
  <a href="https://github.com/dbt-labs/dbt-spark/actions/workflows/main.yml">
    <img src="https://github.com/dbt-labs/dbt-spark/actions/workflows/main.yml/badge.svg?event=push" alt="Unit Tests Badge"/>
  </a>
  <a href="https://github.com/dbt-labs/dbt-spark/actions/workflows/integration.yml">
    <img src="https://github.com/dbt-labs/dbt-spark/actions/workflows/integration.yml/badge.svg?event=push" alt="Integration Tests Badge"/>
  </a>
</p>

**[dbt](https://www.getdbt.com/)** enables data analysts and engineers to transform their data using the same practices that software engineers use to build applications.

dbt is the T in ELT. Organize, cleanse, denormalize, filter, rename, and pre-aggregate the raw data in your warehouse so that it's ready for analysis.

## dbt-spark

The `dbt-spark` package contains all of the code enabling dbt to work with Apache Spark and Databricks. For
more information, consult [the docs](https://docs.getdbt.com/docs/profile-spark).

## Getting started

- [Install dbt](https://docs.getdbt.com/docs/installation)
- Read the [introduction](https://docs.getdbt.com/docs/introduction/) and [viewpoint](https://docs.getdbt.com/docs/about/viewpoint/)

## Running locally
A `docker-compose` environment starts a Spark Thrift server and a Postgres database as a Hive Metastore backend.
Note: dbt-spark now supports Spark 3.1.1 (formerly on Spark 2.x).

The following command would start two docker containers
```
docker-compose up -d
```
It will take a bit of time for the instance to start, you can check the logs of the two containers.
If the instance doesn't start correctly, try the complete reset command listed below and then try start again.

Create a profile like this one:

```
spark_testing:
  target: local
  outputs:
    local:
      type: spark
      method: thrift
      host: 127.0.0.1
      port: 10000
      user: dbt
      schema: analytics
      connect_retries: 5
      connect_timeout: 60
      retry_all: true
```

Connecting to the local spark instance:

* The Spark UI should be available at [http://localhost:4040/sqlserver/](http://localhost:4040/sqlserver/)
* The endpoint for SQL-based testing is at `http://localhost:10000` and can be referenced with the Hive or Spark JDBC drivers using connection string `jdbc:hive2://localhost:10000` and default credentials `dbt`:`dbt`

Note that the Hive metastore data is persisted under `./.hive-metastore/`, and the Spark-produced data under `./.spark-warehouse/`. To completely reset you environment run the following:

```
docker-compose down
rm -rf ./.hive-metastore/
rm -rf ./.spark-warehouse/
```

### Reporting bugs and contributing code

-   Want to report a bug or request a feature? Let us know on [Slack](http://slack.getdbt.com/), or open [an issue](https://github.com/fishtown-analytics/dbt-spark/issues/new).

## Code of Conduct

Everyone interacting in the dbt project's codebases, issue trackers, chat rooms, and mailing lists is expected to follow the [PyPA Code of Conduct](https://www.pypa.io/en/latest/code-of-conduct/).

## Join the dbt Community

- Be part of the conversation in the [dbt Community Slack](http://community.getdbt.com/)
- Read more on the [dbt Community Discourse](https://discourse.getdbt.com)

## Reporting bugs and contributing code

- Want to report a bug or request a feature? Let us know on [Slack](http://community.getdbt.com/), or open [an issue](https://github.com/dbt-labs/dbt-spark/issues/new)
- Want to help us build dbt? Check out the [Contributing Guide](https://github.com/dbt-labs/dbt/blob/HEAD/CONTRIBUTING.md)

## Code of Conduct

Everyone interacting in the dbt project's codebases, issue trackers, chat rooms, and mailing lists is expected to follow the [dbt Code of Conduct](https://community.getdbt.com/code-of-conduct).


%prep
%autosetup -n dbt-spark-1.4.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-dbt-spark -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 1.4.1-1
- Package Spec generated