1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
|
%global _empty_manifest_terminate_build 0
Name: python-dc-stat-think
Version: 1.1.1
Release: 1
Summary: Utility functions used in the DataCamp Statistical Thinking courses.
License: MIT license
URL: https://github.com/justinbois/dc_stat_think
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/2f/9c/b824da2a757f12fd92df3d0c6cac361e57135c41ba0cd69b4fce1a44dc8e/dc_stat_think-1.1.1.tar.gz
BuildArch: noarch
%description
# DataCamp Statistical Thinking utilities
[](https://pypi.python.org/pypi/dc_stat_think) [](https://travis-ci.org/justinbois/dc_stat_think)
Utility functions used in the DataCamp Statistical Thinking courses.
- [Statistical Thinking in Python Part I](https://www.datacamp.com/courses/statistical-thinking-in-python-part-1/)
- [Statistical Thinking in Python Part II](https://www.datacamp.com/courses/statistical-thinking-in-python-part-2/)
- [Case Studies in Statistical Thinking](https://www.datacamp.com/courses/case-studies-in-statistical-thinking/)
## Installation
dc_stat_think may be installed by running the following command.
```
pip install dc_stat_think
```
## Usage
Upon importing the module, functions from the DataCamp Statistical Thinking courses are available. For example, you can compute a 95% confidence interval of the mean of some data using the `draw_bs_reps()` function.
```python
>>> import numpy as np
>>> import dc_stat_think as dcst
>>> data = np.array([1.2, 3.3, 2.7, 2.4, 5.6,
3.4, 1.3, 3.9, 2.9, 2.1, 2.7])
>>> bs_reps = dcst.draw_bs_reps(data, np.mean, size=10000)
>>> conf_int = np.percentile(bs_reps, [2.5, 97.5])
>>> print(conf_int)
[ 2.21818182 3.60909091]
```
## Implementation
The functions include in dc_stat_think are not *exactly* like those students wrote in the DataCamp Statistical Thinking courses. Notable differences are listed below.
+ The doc strings in dc_stat_think are much more complete.
+ The dc_stat_think module has error checking of inputs.
+ In most cases, especially those involving bootstrapping or other uses of the `np.random` module, dc_stat_think functions are more optimized for speed, in particular using [Numba](http://numba.pydata.org). Note, though, that dc_stat_think does not take advantage of any parallel computing.
If you do want to use functions *exactly* as written in the Statistical Thinking courses, you can use the `dc_stat_think.original` submodule.
```python
>>> import numpy as np
>>> import dc_stat_think.original
>>> data = np.array([1.2, 3.3, 2.7, 2.4, 5.6, 3.4, 1.3, 3.9, 2.9, 2.1, 2.7])
>>> bs_reps = dc_stat_think.original.draw_bs_reps(data, np.mean, size=10000)
>>> conf_int = np.percentile(bs_reps, [2.5, 97.5])
>>> print(conf_int)
[ 2.20909091 3.59090909]
```
## Credits
This package was created with [Cookiecutter](https://github.com/audreyr/cookiecutter) and the [audreyr/cookiecutter-pypackage](https://github.com/audreyr/cookiecutter-pypackage) project template and then modified.
%package -n python3-dc-stat-think
Summary: Utility functions used in the DataCamp Statistical Thinking courses.
Provides: python-dc-stat-think
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-dc-stat-think
# DataCamp Statistical Thinking utilities
[](https://pypi.python.org/pypi/dc_stat_think) [](https://travis-ci.org/justinbois/dc_stat_think)
Utility functions used in the DataCamp Statistical Thinking courses.
- [Statistical Thinking in Python Part I](https://www.datacamp.com/courses/statistical-thinking-in-python-part-1/)
- [Statistical Thinking in Python Part II](https://www.datacamp.com/courses/statistical-thinking-in-python-part-2/)
- [Case Studies in Statistical Thinking](https://www.datacamp.com/courses/case-studies-in-statistical-thinking/)
## Installation
dc_stat_think may be installed by running the following command.
```
pip install dc_stat_think
```
## Usage
Upon importing the module, functions from the DataCamp Statistical Thinking courses are available. For example, you can compute a 95% confidence interval of the mean of some data using the `draw_bs_reps()` function.
```python
>>> import numpy as np
>>> import dc_stat_think as dcst
>>> data = np.array([1.2, 3.3, 2.7, 2.4, 5.6,
3.4, 1.3, 3.9, 2.9, 2.1, 2.7])
>>> bs_reps = dcst.draw_bs_reps(data, np.mean, size=10000)
>>> conf_int = np.percentile(bs_reps, [2.5, 97.5])
>>> print(conf_int)
[ 2.21818182 3.60909091]
```
## Implementation
The functions include in dc_stat_think are not *exactly* like those students wrote in the DataCamp Statistical Thinking courses. Notable differences are listed below.
+ The doc strings in dc_stat_think are much more complete.
+ The dc_stat_think module has error checking of inputs.
+ In most cases, especially those involving bootstrapping or other uses of the `np.random` module, dc_stat_think functions are more optimized for speed, in particular using [Numba](http://numba.pydata.org). Note, though, that dc_stat_think does not take advantage of any parallel computing.
If you do want to use functions *exactly* as written in the Statistical Thinking courses, you can use the `dc_stat_think.original` submodule.
```python
>>> import numpy as np
>>> import dc_stat_think.original
>>> data = np.array([1.2, 3.3, 2.7, 2.4, 5.6, 3.4, 1.3, 3.9, 2.9, 2.1, 2.7])
>>> bs_reps = dc_stat_think.original.draw_bs_reps(data, np.mean, size=10000)
>>> conf_int = np.percentile(bs_reps, [2.5, 97.5])
>>> print(conf_int)
[ 2.20909091 3.59090909]
```
## Credits
This package was created with [Cookiecutter](https://github.com/audreyr/cookiecutter) and the [audreyr/cookiecutter-pypackage](https://github.com/audreyr/cookiecutter-pypackage) project template and then modified.
%package help
Summary: Development documents and examples for dc-stat-think
Provides: python3-dc-stat-think-doc
%description help
# DataCamp Statistical Thinking utilities
[](https://pypi.python.org/pypi/dc_stat_think) [](https://travis-ci.org/justinbois/dc_stat_think)
Utility functions used in the DataCamp Statistical Thinking courses.
- [Statistical Thinking in Python Part I](https://www.datacamp.com/courses/statistical-thinking-in-python-part-1/)
- [Statistical Thinking in Python Part II](https://www.datacamp.com/courses/statistical-thinking-in-python-part-2/)
- [Case Studies in Statistical Thinking](https://www.datacamp.com/courses/case-studies-in-statistical-thinking/)
## Installation
dc_stat_think may be installed by running the following command.
```
pip install dc_stat_think
```
## Usage
Upon importing the module, functions from the DataCamp Statistical Thinking courses are available. For example, you can compute a 95% confidence interval of the mean of some data using the `draw_bs_reps()` function.
```python
>>> import numpy as np
>>> import dc_stat_think as dcst
>>> data = np.array([1.2, 3.3, 2.7, 2.4, 5.6,
3.4, 1.3, 3.9, 2.9, 2.1, 2.7])
>>> bs_reps = dcst.draw_bs_reps(data, np.mean, size=10000)
>>> conf_int = np.percentile(bs_reps, [2.5, 97.5])
>>> print(conf_int)
[ 2.21818182 3.60909091]
```
## Implementation
The functions include in dc_stat_think are not *exactly* like those students wrote in the DataCamp Statistical Thinking courses. Notable differences are listed below.
+ The doc strings in dc_stat_think are much more complete.
+ The dc_stat_think module has error checking of inputs.
+ In most cases, especially those involving bootstrapping or other uses of the `np.random` module, dc_stat_think functions are more optimized for speed, in particular using [Numba](http://numba.pydata.org). Note, though, that dc_stat_think does not take advantage of any parallel computing.
If you do want to use functions *exactly* as written in the Statistical Thinking courses, you can use the `dc_stat_think.original` submodule.
```python
>>> import numpy as np
>>> import dc_stat_think.original
>>> data = np.array([1.2, 3.3, 2.7, 2.4, 5.6, 3.4, 1.3, 3.9, 2.9, 2.1, 2.7])
>>> bs_reps = dc_stat_think.original.draw_bs_reps(data, np.mean, size=10000)
>>> conf_int = np.percentile(bs_reps, [2.5, 97.5])
>>> print(conf_int)
[ 2.20909091 3.59090909]
```
## Credits
This package was created with [Cookiecutter](https://github.com/audreyr/cookiecutter) and the [audreyr/cookiecutter-pypackage](https://github.com/audreyr/cookiecutter-pypackage) project template and then modified.
%prep
%autosetup -n dc_stat_think-1.1.1
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-dc-stat-think -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.1-1
- Package Spec generated
|