summaryrefslogtreecommitdiff
path: root/python-deap.spec
blob: c038adf53c999bb8c60f8d76fc0b6f075b997e73 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
%global _empty_manifest_terminate_build 0
Name:		python-deap
Version:	1.3.3
Release:	1
Summary:	Distributed Evolutionary Algorithms in Python
License:	LGPL
URL:		https://www.github.com/deap
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/9a/a1/8c5ad42e78abdd7d2174baace0bd864ef6fd9a86c1cf72d410945669d784/deap-1.3.3.tar.gz

Requires:	python3-numpy

%description
# DEAP

[![Build status](https://travis-ci.org/DEAP/deap.svg?branch=master)](https://travis-ci.org/DEAP/deap) [![Download](https://img.shields.io/pypi/dm/deap.svg)](https://pypi.python.org/pypi/deap) [![Join the chat at https://gitter.im/DEAP/deap](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/DEAP/deap?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) [![Build Status](https://dev.azure.com/fderainville/DEAP/_apis/build/status/DEAP.deap?branchName=master)](https://dev.azure.com/fderainville/DEAP/_build/latest?definitionId=1&branchName=master) [![Documentation Status](https://readthedocs.org/projects/deap/badge/?version=master)](https://deap.readthedocs.io/en/master/?badge=master)

DEAP is a novel evolutionary computation framework for rapid prototyping and testing of 
ideas. It seeks to make algorithms explicit and data structures transparent. It works in perfect harmony with parallelisation mechanisms such as multiprocessing and [SCOOP](https://github.com/soravux/scoop).

DEAP includes the following features:

  * Genetic algorithm using any imaginable representation
    * List, Array, Set, Dictionary, Tree, Numpy Array, etc.
  * Genetic programming using prefix trees
    * Loosely typed, Strongly typed
    * Automatically defined functions
  * Evolution strategies (including CMA-ES)
  * Multi-objective optimisation (NSGA-II, NSGA-III, SPEA2, MO-CMA-ES)
  * Co-evolution (cooperative and competitive) of multiple populations
  * Parallelization of the evaluations (and more)
  * Hall of Fame of the best individuals that lived in the population
  * Checkpoints that take snapshots of a system regularly
  * Benchmarks module containing most common test functions
  * Genealogy of an evolution (that is compatible with [NetworkX](https://github.com/networkx/networkx))
  * Examples of alternative algorithms : Particle Swarm Optimization, Differential Evolution, Estimation of Distribution Algorithm

## Downloads

Following acceptance of [PEP 438](http://www.python.org/dev/peps/pep-0438/) by the Python community, we have moved DEAP's source releases on [PyPI](https://pypi.python.org).

You can find the most recent releases at: https://pypi.python.org/pypi/deap/.

## Documentation
See the [DEAP User's Guide](http://deap.readthedocs.org/) for DEAP documentation.

In order to get the tip documentation, change directory to the `doc` subfolder and type in `make html`, the documentation will be under `_build/html`. You will need [Sphinx](http://sphinx.pocoo.org) to build the documentation.

### Notebooks
Also checkout our new [notebook examples](https://github.com/DEAP/notebooks). Using [Jupyter notebooks](http://jupyter.org)  you'll be able to navigate and execute each block of code individually and tell what every line is doing. Either, look at the notebooks online using the notebook viewer links at the botom of the page or download the notebooks, navigate to the you download directory and run

```bash
jupyter notebook
```

## Installation
We encourage you to use easy_install or pip to install DEAP on your system. Other installation procedure like apt-get, yum, etc. usually provide an outdated version.
```bash
pip install deap
```

The latest version can be installed with 
```bash
pip install git+https://github.com/DEAP/deap@master
```

If you wish to build from sources, download or clone the repository and type

```bash
python setup.py install
```

## Build Status
DEAP build status is available on Travis-CI https://travis-ci.org/DEAP/deap.

## Requirements
The most basic features of DEAP requires Python2.6. In order to combine the toolbox and the multiprocessing module Python2.7 is needed for its support to pickle partial functions. CMA-ES requires Numpy, and we recommend matplotlib for visualization of results as it is fully compatible with DEAP's API.

Since version 0.8, DEAP is compatible out of the box with Python 3.

## Example

The following code gives a quick overview how simple it is to implement the Onemax problem optimization with genetic algorithm using DEAP.  More examples are provided [here](http://deap.readthedocs.org/en/master/examples/index.html).

```python
import random
from deap import creator, base, tools, algorithms

creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)

toolbox = base.Toolbox()

toolbox.register("attr_bool", random.randint, 0, 1)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, n=100)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)

def evalOneMax(individual):
    return sum(individual),

toolbox.register("evaluate", evalOneMax)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)

population = toolbox.population(n=300)

NGEN=40
for gen in range(NGEN):
    offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.1)
    fits = toolbox.map(toolbox.evaluate, offspring)
    for fit, ind in zip(fits, offspring):
        ind.fitness.values = fit
    population = toolbox.select(offspring, k=len(population))
top10 = tools.selBest(population, k=10)
```

## How to cite DEAP
Authors of scientific papers including results generated using DEAP are encouraged to cite the following paper.

```xml
@article{DEAP_JMLR2012, 
    author    = " F\'elix-Antoine Fortin and Fran\c{c}ois-Michel {De Rainville} and Marc-Andr\'e Gardner and Marc Parizeau and Christian Gagn\'e ",
    title     = { {DEAP}: Evolutionary Algorithms Made Easy },
    pages    = { 2171--2175 },
    volume    = { 13 },
    month     = { jul },
    year      = { 2012 },
    journal   = { Journal of Machine Learning Research }
}
```

## Publications on DEAP

  * François-Michel De Rainville, Félix-Antoine Fortin, Marc-André Gardner, Marc Parizeau and Christian Gagné, "DEAP -- Enabling Nimbler Evolutions", SIGEVOlution, vol. 6, no 2, pp. 17-26, February 2014. [Paper](http://goo.gl/tOrXTp)
  * Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc Parizeau and Christian Gagné, "DEAP: Evolutionary Algorithms Made Easy", Journal of Machine Learning Research, vol. 13, pp. 2171-2175, jul 2012. [Paper](http://goo.gl/amJ3x)
  * François-Michel De Rainville, Félix-Antoine Fortin, Marc-André Gardner, Marc Parizeau and Christian Gagné, "DEAP: A Python Framework for Evolutionary Algorithms", in !EvoSoft Workshop, Companion proc. of the Genetic and Evolutionary Computation Conference (GECCO 2012), July 07-11 2012. [Paper](http://goo.gl/pXXug)

## Projects using DEAP
  * Ribaric, T., & Houghten, S. (2017, June). Genetic programming for improved cryptanalysis of elliptic curve cryptosystems. In 2017 IEEE Congress on Evolutionary Computation (CEC) (pp. 419-426). IEEE.
  * Ellefsen, Kai Olav, Herman Augusto Lepikson, and Jan C. Albiez. "Multiobjective coverage path planning: Enabling automated inspection of complex, real-world structures." Applied Soft Computing 61 (2017): 264-282.
  * S. Chardon, B. Brangeon, E. Bozonnet, C. Inard (2016), Construction cost and energy performance of single family houses : From integrated design to automated optimization, Automation in Construction, Volume 70, p.1-13.
  * B. Brangeon, E. Bozonnet, C. Inard (2016), Integrated refurbishment of collective housing and optimization process with real products databases, Building Simulation Optimization, pp. 531–538 Newcastle, England.
  * Randal S. Olson, Ryan J. Urbanowicz, Peter C. Andrews, Nicole A. Lavender, La Creis Kidd, and Jason H. Moore (2016). Automating biomedical data science through tree-based pipeline optimization. Applications of Evolutionary Computation, pages 123-137.
  * Randal S. Olson, Nathan Bartley, Ryan J. Urbanowicz, and Jason H. Moore (2016). Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science. Proceedings of GECCO 2016, pages 485-492.
  * Van Geit W, Gevaert M, Chindemi G, Rössert C, Courcol J, Muller EB, Schürmann F, Segev I and Markram H (2016). BluePyOpt: Leveraging open source software and cloud infrastructure to optimise model parameters in neuroscience. Front. Neuroinform. 10:17. doi: 10.3389/fninf.2016.00017 https://github.com/BlueBrain/BluePyOpt
  * Lara-Cabrera, R., Cotta, C. and Fernández-Leiva, A.J. (2014). Geometrical vs topological measures for the evolution of aesthetic maps in a rts game, Entertainment Computing,
  * Macret, M. and Pasquier, P. (2013). Automatic Tuning of the OP-1 Synthesizer Using a Multi-objective Genetic Algorithm. In Proceedings of the 10th Sound and Music Computing Conference (SMC). (pp 614-621).
  * Fortin, F. A., Grenier, S., & Parizeau, M. (2013, July). Generalizing the improved run-time complexity algorithm for non-dominated sorting. In Proceeding of the fifteenth annual conference on Genetic and evolutionary computation conference (pp. 615-622). ACM.
  * Fortin, F. A., & Parizeau, M. (2013, July). Revisiting the NSGA-II crowding-distance computation. In Proceeding of the fifteenth annual conference on Genetic and evolutionary computation conference (pp. 623-630). ACM.
  * Marc-André Gardner, Christian Gagné, and Marc Parizeau. Estimation of Distribution Algorithm based on Hidden Markov Models for Combinatorial Optimization. in Comp. Proc. Genetic and Evolutionary Computation Conference (GECCO 2013), July 2013.
  * J. T. Zhai, M. A. Bamakhrama, and T. Stefanov. "Exploiting Just-enough Parallelism when Mapping Streaming Applications in Hard Real-time Systems". Design Automation Conference (DAC 2013), 2013.
  * V. Akbarzadeh, C. Gagné, M. Parizeau, M. Argany, M. A Mostafavi, "Probabilistic Sensing Model for Sensor Placement Optimization Based on Line-of-Sight Coverage", Accepted in IEEE Transactions on Instrumentation and Measurement, 2012.
  * M. Reif, F. Shafait, and A. Dengel. "Dataset Generation for Meta-Learning". Proceedings of the German Conference on Artificial Intelligence (KI'12). 2012. 
  * M. T. Ribeiro, A. Lacerda, A. Veloso, and N. Ziviani. "Pareto-Efficient Hybridization for Multi-Objective Recommender Systems". Proceedings of the Conference on Recommanders Systems (!RecSys'12). 2012.
  * M. Pérez-Ortiz, A. Arauzo-Azofra, C. Hervás-Martínez, L. García-Hernández and L. Salas-Morera. "A system learning user preferences for multiobjective optimization of facility layouts". Pr,oceedings on the Int. Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO'12). 2012.
  * Lévesque, J.C., Durand, A., Gagné, C., and Sabourin, R., Multi-Objective Evolutionary Optimization for Generating Ensembles of Classifiers in the ROC Space, Genetic and Evolutionary Computation Conference (GECCO 2012), 2012.
  * Marc-André Gardner, Christian Gagné, and Marc Parizeau, "Bloat Control in Genetic Programming with Histogram-based Accept-Reject Method", in Proc. Genetic and Evolutionary Computation Conference (GECCO 2011), 2011.
  * Vahab Akbarzadeh, Albert Ko, Christian Gagné, and Marc Parizeau, "Topography-Aware Sensor Deployment Optimization with CMA-ES", in Proc. of Parallel Problem Solving from Nature (PPSN 2010), Springer, 2010.
  * DEAP is used in [TPOT](https://github.com/rhiever/tpot), an open source tool that uses genetic programming to optimize machine learning pipelines.
  * DEAP is also used in ROS as an optimization package http://www.ros.org/wiki/deap.
  * DEAP is an optional dependency for [PyXRD](https://github.com/mathijs-dumon/PyXRD), a Python implementation of the matrix algorithm developed for the X-ray diffraction analysis of disordered lamellar structures.
  * DEAP is used in [glyph](https://github.com/Ambrosys/glyph), a library for symbolic regression with applications to [MLC](https://en.wikipedia.org/wiki/Machine_learning_control).
  * DEAP is used in [Sklearn-genetic-opt](https://github.com/rodrigo-arenas/Sklearn-genetic-opt), an open source tool that uses evolutionary programming to fine tune machine learning hyperparameters.

If you want your project listed here, send us a link and a brief description and we'll be glad to add it.




%package -n python3-deap
Summary:	Distributed Evolutionary Algorithms in Python
Provides:	python-deap
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
BuildRequires:	python3-cffi
BuildRequires:	gcc
BuildRequires:	gdb
%description -n python3-deap
# DEAP

[![Build status](https://travis-ci.org/DEAP/deap.svg?branch=master)](https://travis-ci.org/DEAP/deap) [![Download](https://img.shields.io/pypi/dm/deap.svg)](https://pypi.python.org/pypi/deap) [![Join the chat at https://gitter.im/DEAP/deap](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/DEAP/deap?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) [![Build Status](https://dev.azure.com/fderainville/DEAP/_apis/build/status/DEAP.deap?branchName=master)](https://dev.azure.com/fderainville/DEAP/_build/latest?definitionId=1&branchName=master) [![Documentation Status](https://readthedocs.org/projects/deap/badge/?version=master)](https://deap.readthedocs.io/en/master/?badge=master)

DEAP is a novel evolutionary computation framework for rapid prototyping and testing of 
ideas. It seeks to make algorithms explicit and data structures transparent. It works in perfect harmony with parallelisation mechanisms such as multiprocessing and [SCOOP](https://github.com/soravux/scoop).

DEAP includes the following features:

  * Genetic algorithm using any imaginable representation
    * List, Array, Set, Dictionary, Tree, Numpy Array, etc.
  * Genetic programming using prefix trees
    * Loosely typed, Strongly typed
    * Automatically defined functions
  * Evolution strategies (including CMA-ES)
  * Multi-objective optimisation (NSGA-II, NSGA-III, SPEA2, MO-CMA-ES)
  * Co-evolution (cooperative and competitive) of multiple populations
  * Parallelization of the evaluations (and more)
  * Hall of Fame of the best individuals that lived in the population
  * Checkpoints that take snapshots of a system regularly
  * Benchmarks module containing most common test functions
  * Genealogy of an evolution (that is compatible with [NetworkX](https://github.com/networkx/networkx))
  * Examples of alternative algorithms : Particle Swarm Optimization, Differential Evolution, Estimation of Distribution Algorithm

## Downloads

Following acceptance of [PEP 438](http://www.python.org/dev/peps/pep-0438/) by the Python community, we have moved DEAP's source releases on [PyPI](https://pypi.python.org).

You can find the most recent releases at: https://pypi.python.org/pypi/deap/.

## Documentation
See the [DEAP User's Guide](http://deap.readthedocs.org/) for DEAP documentation.

In order to get the tip documentation, change directory to the `doc` subfolder and type in `make html`, the documentation will be under `_build/html`. You will need [Sphinx](http://sphinx.pocoo.org) to build the documentation.

### Notebooks
Also checkout our new [notebook examples](https://github.com/DEAP/notebooks). Using [Jupyter notebooks](http://jupyter.org)  you'll be able to navigate and execute each block of code individually and tell what every line is doing. Either, look at the notebooks online using the notebook viewer links at the botom of the page or download the notebooks, navigate to the you download directory and run

```bash
jupyter notebook
```

## Installation
We encourage you to use easy_install or pip to install DEAP on your system. Other installation procedure like apt-get, yum, etc. usually provide an outdated version.
```bash
pip install deap
```

The latest version can be installed with 
```bash
pip install git+https://github.com/DEAP/deap@master
```

If you wish to build from sources, download or clone the repository and type

```bash
python setup.py install
```

## Build Status
DEAP build status is available on Travis-CI https://travis-ci.org/DEAP/deap.

## Requirements
The most basic features of DEAP requires Python2.6. In order to combine the toolbox and the multiprocessing module Python2.7 is needed for its support to pickle partial functions. CMA-ES requires Numpy, and we recommend matplotlib for visualization of results as it is fully compatible with DEAP's API.

Since version 0.8, DEAP is compatible out of the box with Python 3.

## Example

The following code gives a quick overview how simple it is to implement the Onemax problem optimization with genetic algorithm using DEAP.  More examples are provided [here](http://deap.readthedocs.org/en/master/examples/index.html).

```python
import random
from deap import creator, base, tools, algorithms

creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)

toolbox = base.Toolbox()

toolbox.register("attr_bool", random.randint, 0, 1)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, n=100)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)

def evalOneMax(individual):
    return sum(individual),

toolbox.register("evaluate", evalOneMax)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)

population = toolbox.population(n=300)

NGEN=40
for gen in range(NGEN):
    offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.1)
    fits = toolbox.map(toolbox.evaluate, offspring)
    for fit, ind in zip(fits, offspring):
        ind.fitness.values = fit
    population = toolbox.select(offspring, k=len(population))
top10 = tools.selBest(population, k=10)
```

## How to cite DEAP
Authors of scientific papers including results generated using DEAP are encouraged to cite the following paper.

```xml
@article{DEAP_JMLR2012, 
    author    = " F\'elix-Antoine Fortin and Fran\c{c}ois-Michel {De Rainville} and Marc-Andr\'e Gardner and Marc Parizeau and Christian Gagn\'e ",
    title     = { {DEAP}: Evolutionary Algorithms Made Easy },
    pages    = { 2171--2175 },
    volume    = { 13 },
    month     = { jul },
    year      = { 2012 },
    journal   = { Journal of Machine Learning Research }
}
```

## Publications on DEAP

  * François-Michel De Rainville, Félix-Antoine Fortin, Marc-André Gardner, Marc Parizeau and Christian Gagné, "DEAP -- Enabling Nimbler Evolutions", SIGEVOlution, vol. 6, no 2, pp. 17-26, February 2014. [Paper](http://goo.gl/tOrXTp)
  * Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc Parizeau and Christian Gagné, "DEAP: Evolutionary Algorithms Made Easy", Journal of Machine Learning Research, vol. 13, pp. 2171-2175, jul 2012. [Paper](http://goo.gl/amJ3x)
  * François-Michel De Rainville, Félix-Antoine Fortin, Marc-André Gardner, Marc Parizeau and Christian Gagné, "DEAP: A Python Framework for Evolutionary Algorithms", in !EvoSoft Workshop, Companion proc. of the Genetic and Evolutionary Computation Conference (GECCO 2012), July 07-11 2012. [Paper](http://goo.gl/pXXug)

## Projects using DEAP
  * Ribaric, T., & Houghten, S. (2017, June). Genetic programming for improved cryptanalysis of elliptic curve cryptosystems. In 2017 IEEE Congress on Evolutionary Computation (CEC) (pp. 419-426). IEEE.
  * Ellefsen, Kai Olav, Herman Augusto Lepikson, and Jan C. Albiez. "Multiobjective coverage path planning: Enabling automated inspection of complex, real-world structures." Applied Soft Computing 61 (2017): 264-282.
  * S. Chardon, B. Brangeon, E. Bozonnet, C. Inard (2016), Construction cost and energy performance of single family houses : From integrated design to automated optimization, Automation in Construction, Volume 70, p.1-13.
  * B. Brangeon, E. Bozonnet, C. Inard (2016), Integrated refurbishment of collective housing and optimization process with real products databases, Building Simulation Optimization, pp. 531–538 Newcastle, England.
  * Randal S. Olson, Ryan J. Urbanowicz, Peter C. Andrews, Nicole A. Lavender, La Creis Kidd, and Jason H. Moore (2016). Automating biomedical data science through tree-based pipeline optimization. Applications of Evolutionary Computation, pages 123-137.
  * Randal S. Olson, Nathan Bartley, Ryan J. Urbanowicz, and Jason H. Moore (2016). Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science. Proceedings of GECCO 2016, pages 485-492.
  * Van Geit W, Gevaert M, Chindemi G, Rössert C, Courcol J, Muller EB, Schürmann F, Segev I and Markram H (2016). BluePyOpt: Leveraging open source software and cloud infrastructure to optimise model parameters in neuroscience. Front. Neuroinform. 10:17. doi: 10.3389/fninf.2016.00017 https://github.com/BlueBrain/BluePyOpt
  * Lara-Cabrera, R., Cotta, C. and Fernández-Leiva, A.J. (2014). Geometrical vs topological measures for the evolution of aesthetic maps in a rts game, Entertainment Computing,
  * Macret, M. and Pasquier, P. (2013). Automatic Tuning of the OP-1 Synthesizer Using a Multi-objective Genetic Algorithm. In Proceedings of the 10th Sound and Music Computing Conference (SMC). (pp 614-621).
  * Fortin, F. A., Grenier, S., & Parizeau, M. (2013, July). Generalizing the improved run-time complexity algorithm for non-dominated sorting. In Proceeding of the fifteenth annual conference on Genetic and evolutionary computation conference (pp. 615-622). ACM.
  * Fortin, F. A., & Parizeau, M. (2013, July). Revisiting the NSGA-II crowding-distance computation. In Proceeding of the fifteenth annual conference on Genetic and evolutionary computation conference (pp. 623-630). ACM.
  * Marc-André Gardner, Christian Gagné, and Marc Parizeau. Estimation of Distribution Algorithm based on Hidden Markov Models for Combinatorial Optimization. in Comp. Proc. Genetic and Evolutionary Computation Conference (GECCO 2013), July 2013.
  * J. T. Zhai, M. A. Bamakhrama, and T. Stefanov. "Exploiting Just-enough Parallelism when Mapping Streaming Applications in Hard Real-time Systems". Design Automation Conference (DAC 2013), 2013.
  * V. Akbarzadeh, C. Gagné, M. Parizeau, M. Argany, M. A Mostafavi, "Probabilistic Sensing Model for Sensor Placement Optimization Based on Line-of-Sight Coverage", Accepted in IEEE Transactions on Instrumentation and Measurement, 2012.
  * M. Reif, F. Shafait, and A. Dengel. "Dataset Generation for Meta-Learning". Proceedings of the German Conference on Artificial Intelligence (KI'12). 2012. 
  * M. T. Ribeiro, A. Lacerda, A. Veloso, and N. Ziviani. "Pareto-Efficient Hybridization for Multi-Objective Recommender Systems". Proceedings of the Conference on Recommanders Systems (!RecSys'12). 2012.
  * M. Pérez-Ortiz, A. Arauzo-Azofra, C. Hervás-Martínez, L. García-Hernández and L. Salas-Morera. "A system learning user preferences for multiobjective optimization of facility layouts". Pr,oceedings on the Int. Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO'12). 2012.
  * Lévesque, J.C., Durand, A., Gagné, C., and Sabourin, R., Multi-Objective Evolutionary Optimization for Generating Ensembles of Classifiers in the ROC Space, Genetic and Evolutionary Computation Conference (GECCO 2012), 2012.
  * Marc-André Gardner, Christian Gagné, and Marc Parizeau, "Bloat Control in Genetic Programming with Histogram-based Accept-Reject Method", in Proc. Genetic and Evolutionary Computation Conference (GECCO 2011), 2011.
  * Vahab Akbarzadeh, Albert Ko, Christian Gagné, and Marc Parizeau, "Topography-Aware Sensor Deployment Optimization with CMA-ES", in Proc. of Parallel Problem Solving from Nature (PPSN 2010), Springer, 2010.
  * DEAP is used in [TPOT](https://github.com/rhiever/tpot), an open source tool that uses genetic programming to optimize machine learning pipelines.
  * DEAP is also used in ROS as an optimization package http://www.ros.org/wiki/deap.
  * DEAP is an optional dependency for [PyXRD](https://github.com/mathijs-dumon/PyXRD), a Python implementation of the matrix algorithm developed for the X-ray diffraction analysis of disordered lamellar structures.
  * DEAP is used in [glyph](https://github.com/Ambrosys/glyph), a library for symbolic regression with applications to [MLC](https://en.wikipedia.org/wiki/Machine_learning_control).
  * DEAP is used in [Sklearn-genetic-opt](https://github.com/rodrigo-arenas/Sklearn-genetic-opt), an open source tool that uses evolutionary programming to fine tune machine learning hyperparameters.

If you want your project listed here, send us a link and a brief description and we'll be glad to add it.




%package help
Summary:	Development documents and examples for deap
Provides:	python3-deap-doc
%description help
# DEAP

[![Build status](https://travis-ci.org/DEAP/deap.svg?branch=master)](https://travis-ci.org/DEAP/deap) [![Download](https://img.shields.io/pypi/dm/deap.svg)](https://pypi.python.org/pypi/deap) [![Join the chat at https://gitter.im/DEAP/deap](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/DEAP/deap?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) [![Build Status](https://dev.azure.com/fderainville/DEAP/_apis/build/status/DEAP.deap?branchName=master)](https://dev.azure.com/fderainville/DEAP/_build/latest?definitionId=1&branchName=master) [![Documentation Status](https://readthedocs.org/projects/deap/badge/?version=master)](https://deap.readthedocs.io/en/master/?badge=master)

DEAP is a novel evolutionary computation framework for rapid prototyping and testing of 
ideas. It seeks to make algorithms explicit and data structures transparent. It works in perfect harmony with parallelisation mechanisms such as multiprocessing and [SCOOP](https://github.com/soravux/scoop).

DEAP includes the following features:

  * Genetic algorithm using any imaginable representation
    * List, Array, Set, Dictionary, Tree, Numpy Array, etc.
  * Genetic programming using prefix trees
    * Loosely typed, Strongly typed
    * Automatically defined functions
  * Evolution strategies (including CMA-ES)
  * Multi-objective optimisation (NSGA-II, NSGA-III, SPEA2, MO-CMA-ES)
  * Co-evolution (cooperative and competitive) of multiple populations
  * Parallelization of the evaluations (and more)
  * Hall of Fame of the best individuals that lived in the population
  * Checkpoints that take snapshots of a system regularly
  * Benchmarks module containing most common test functions
  * Genealogy of an evolution (that is compatible with [NetworkX](https://github.com/networkx/networkx))
  * Examples of alternative algorithms : Particle Swarm Optimization, Differential Evolution, Estimation of Distribution Algorithm

## Downloads

Following acceptance of [PEP 438](http://www.python.org/dev/peps/pep-0438/) by the Python community, we have moved DEAP's source releases on [PyPI](https://pypi.python.org).

You can find the most recent releases at: https://pypi.python.org/pypi/deap/.

## Documentation
See the [DEAP User's Guide](http://deap.readthedocs.org/) for DEAP documentation.

In order to get the tip documentation, change directory to the `doc` subfolder and type in `make html`, the documentation will be under `_build/html`. You will need [Sphinx](http://sphinx.pocoo.org) to build the documentation.

### Notebooks
Also checkout our new [notebook examples](https://github.com/DEAP/notebooks). Using [Jupyter notebooks](http://jupyter.org)  you'll be able to navigate and execute each block of code individually and tell what every line is doing. Either, look at the notebooks online using the notebook viewer links at the botom of the page or download the notebooks, navigate to the you download directory and run

```bash
jupyter notebook
```

## Installation
We encourage you to use easy_install or pip to install DEAP on your system. Other installation procedure like apt-get, yum, etc. usually provide an outdated version.
```bash
pip install deap
```

The latest version can be installed with 
```bash
pip install git+https://github.com/DEAP/deap@master
```

If you wish to build from sources, download or clone the repository and type

```bash
python setup.py install
```

## Build Status
DEAP build status is available on Travis-CI https://travis-ci.org/DEAP/deap.

## Requirements
The most basic features of DEAP requires Python2.6. In order to combine the toolbox and the multiprocessing module Python2.7 is needed for its support to pickle partial functions. CMA-ES requires Numpy, and we recommend matplotlib for visualization of results as it is fully compatible with DEAP's API.

Since version 0.8, DEAP is compatible out of the box with Python 3.

## Example

The following code gives a quick overview how simple it is to implement the Onemax problem optimization with genetic algorithm using DEAP.  More examples are provided [here](http://deap.readthedocs.org/en/master/examples/index.html).

```python
import random
from deap import creator, base, tools, algorithms

creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)

toolbox = base.Toolbox()

toolbox.register("attr_bool", random.randint, 0, 1)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, n=100)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)

def evalOneMax(individual):
    return sum(individual),

toolbox.register("evaluate", evalOneMax)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)

population = toolbox.population(n=300)

NGEN=40
for gen in range(NGEN):
    offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.1)
    fits = toolbox.map(toolbox.evaluate, offspring)
    for fit, ind in zip(fits, offspring):
        ind.fitness.values = fit
    population = toolbox.select(offspring, k=len(population))
top10 = tools.selBest(population, k=10)
```

## How to cite DEAP
Authors of scientific papers including results generated using DEAP are encouraged to cite the following paper.

```xml
@article{DEAP_JMLR2012, 
    author    = " F\'elix-Antoine Fortin and Fran\c{c}ois-Michel {De Rainville} and Marc-Andr\'e Gardner and Marc Parizeau and Christian Gagn\'e ",
    title     = { {DEAP}: Evolutionary Algorithms Made Easy },
    pages    = { 2171--2175 },
    volume    = { 13 },
    month     = { jul },
    year      = { 2012 },
    journal   = { Journal of Machine Learning Research }
}
```

## Publications on DEAP

  * François-Michel De Rainville, Félix-Antoine Fortin, Marc-André Gardner, Marc Parizeau and Christian Gagné, "DEAP -- Enabling Nimbler Evolutions", SIGEVOlution, vol. 6, no 2, pp. 17-26, February 2014. [Paper](http://goo.gl/tOrXTp)
  * Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc Parizeau and Christian Gagné, "DEAP: Evolutionary Algorithms Made Easy", Journal of Machine Learning Research, vol. 13, pp. 2171-2175, jul 2012. [Paper](http://goo.gl/amJ3x)
  * François-Michel De Rainville, Félix-Antoine Fortin, Marc-André Gardner, Marc Parizeau and Christian Gagné, "DEAP: A Python Framework for Evolutionary Algorithms", in !EvoSoft Workshop, Companion proc. of the Genetic and Evolutionary Computation Conference (GECCO 2012), July 07-11 2012. [Paper](http://goo.gl/pXXug)

## Projects using DEAP
  * Ribaric, T., & Houghten, S. (2017, June). Genetic programming for improved cryptanalysis of elliptic curve cryptosystems. In 2017 IEEE Congress on Evolutionary Computation (CEC) (pp. 419-426). IEEE.
  * Ellefsen, Kai Olav, Herman Augusto Lepikson, and Jan C. Albiez. "Multiobjective coverage path planning: Enabling automated inspection of complex, real-world structures." Applied Soft Computing 61 (2017): 264-282.
  * S. Chardon, B. Brangeon, E. Bozonnet, C. Inard (2016), Construction cost and energy performance of single family houses : From integrated design to automated optimization, Automation in Construction, Volume 70, p.1-13.
  * B. Brangeon, E. Bozonnet, C. Inard (2016), Integrated refurbishment of collective housing and optimization process with real products databases, Building Simulation Optimization, pp. 531–538 Newcastle, England.
  * Randal S. Olson, Ryan J. Urbanowicz, Peter C. Andrews, Nicole A. Lavender, La Creis Kidd, and Jason H. Moore (2016). Automating biomedical data science through tree-based pipeline optimization. Applications of Evolutionary Computation, pages 123-137.
  * Randal S. Olson, Nathan Bartley, Ryan J. Urbanowicz, and Jason H. Moore (2016). Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science. Proceedings of GECCO 2016, pages 485-492.
  * Van Geit W, Gevaert M, Chindemi G, Rössert C, Courcol J, Muller EB, Schürmann F, Segev I and Markram H (2016). BluePyOpt: Leveraging open source software and cloud infrastructure to optimise model parameters in neuroscience. Front. Neuroinform. 10:17. doi: 10.3389/fninf.2016.00017 https://github.com/BlueBrain/BluePyOpt
  * Lara-Cabrera, R., Cotta, C. and Fernández-Leiva, A.J. (2014). Geometrical vs topological measures for the evolution of aesthetic maps in a rts game, Entertainment Computing,
  * Macret, M. and Pasquier, P. (2013). Automatic Tuning of the OP-1 Synthesizer Using a Multi-objective Genetic Algorithm. In Proceedings of the 10th Sound and Music Computing Conference (SMC). (pp 614-621).
  * Fortin, F. A., Grenier, S., & Parizeau, M. (2013, July). Generalizing the improved run-time complexity algorithm for non-dominated sorting. In Proceeding of the fifteenth annual conference on Genetic and evolutionary computation conference (pp. 615-622). ACM.
  * Fortin, F. A., & Parizeau, M. (2013, July). Revisiting the NSGA-II crowding-distance computation. In Proceeding of the fifteenth annual conference on Genetic and evolutionary computation conference (pp. 623-630). ACM.
  * Marc-André Gardner, Christian Gagné, and Marc Parizeau. Estimation of Distribution Algorithm based on Hidden Markov Models for Combinatorial Optimization. in Comp. Proc. Genetic and Evolutionary Computation Conference (GECCO 2013), July 2013.
  * J. T. Zhai, M. A. Bamakhrama, and T. Stefanov. "Exploiting Just-enough Parallelism when Mapping Streaming Applications in Hard Real-time Systems". Design Automation Conference (DAC 2013), 2013.
  * V. Akbarzadeh, C. Gagné, M. Parizeau, M. Argany, M. A Mostafavi, "Probabilistic Sensing Model for Sensor Placement Optimization Based on Line-of-Sight Coverage", Accepted in IEEE Transactions on Instrumentation and Measurement, 2012.
  * M. Reif, F. Shafait, and A. Dengel. "Dataset Generation for Meta-Learning". Proceedings of the German Conference on Artificial Intelligence (KI'12). 2012. 
  * M. T. Ribeiro, A. Lacerda, A. Veloso, and N. Ziviani. "Pareto-Efficient Hybridization for Multi-Objective Recommender Systems". Proceedings of the Conference on Recommanders Systems (!RecSys'12). 2012.
  * M. Pérez-Ortiz, A. Arauzo-Azofra, C. Hervás-Martínez, L. García-Hernández and L. Salas-Morera. "A system learning user preferences for multiobjective optimization of facility layouts". Pr,oceedings on the Int. Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO'12). 2012.
  * Lévesque, J.C., Durand, A., Gagné, C., and Sabourin, R., Multi-Objective Evolutionary Optimization for Generating Ensembles of Classifiers in the ROC Space, Genetic and Evolutionary Computation Conference (GECCO 2012), 2012.
  * Marc-André Gardner, Christian Gagné, and Marc Parizeau, "Bloat Control in Genetic Programming with Histogram-based Accept-Reject Method", in Proc. Genetic and Evolutionary Computation Conference (GECCO 2011), 2011.
  * Vahab Akbarzadeh, Albert Ko, Christian Gagné, and Marc Parizeau, "Topography-Aware Sensor Deployment Optimization with CMA-ES", in Proc. of Parallel Problem Solving from Nature (PPSN 2010), Springer, 2010.
  * DEAP is used in [TPOT](https://github.com/rhiever/tpot), an open source tool that uses genetic programming to optimize machine learning pipelines.
  * DEAP is also used in ROS as an optimization package http://www.ros.org/wiki/deap.
  * DEAP is an optional dependency for [PyXRD](https://github.com/mathijs-dumon/PyXRD), a Python implementation of the matrix algorithm developed for the X-ray diffraction analysis of disordered lamellar structures.
  * DEAP is used in [glyph](https://github.com/Ambrosys/glyph), a library for symbolic regression with applications to [MLC](https://en.wikipedia.org/wiki/Machine_learning_control).
  * DEAP is used in [Sklearn-genetic-opt](https://github.com/rodrigo-arenas/Sklearn-genetic-opt), an open source tool that uses evolutionary programming to fine tune machine learning hyperparameters.

If you want your project listed here, send us a link and a brief description and we'll be glad to add it.




%prep
%autosetup -n deap-1.3.3

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-deap -f filelist.lst
%dir %{python3_sitearch}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri Apr 07 2023 Python_Bot <Python_Bot@openeuler.org> - 1.3.3-1
- Package Spec generated