summaryrefslogtreecommitdiff
path: root/python-deduplipy.spec
blob: 31548f7e9df8142ecb22b0e1f66c6578f34f2f6e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
%global _empty_manifest_terminate_build 0
Name:		python-DedupliPy
Version:	0.8
Release:	1
Summary:	End-to-end deduplication solution
License:	MIT License
URL:		https://github.com/fritshermans/deduplipy
Source0:	https://mirrors.aliyun.com/pypi/web/packages/4c/4c/f984eeac34c0d15cb07820d3abfdc84845aaac56363881c16b21d554e80b/DedupliPy-0.8.tar.gz
BuildArch:	noarch

Requires:	python3-pandas
Requires:	python3-numpy
Requires:	python3-scipy
Requires:	python3-scikit-learn
Requires:	python3-networkx
Requires:	python3-Levenshtein
Requires:	python3-thefuzz
Requires:	python3-modAL-python
Requires:	python3-openpyxl
Requires:	python3-pytest
Requires:	python3-fancyimpute
Requires:	python3-pyminhash
Requires:	python3-pandas
Requires:	python3-numpy
Requires:	python3-scipy
Requires:	python3-scikit-learn
Requires:	python3-networkx
Requires:	python3-Levenshtein
Requires:	python3-thefuzz
Requires:	python3-modAL-python
Requires:	python3-openpyxl
Requires:	python3-pytest
Requires:	python3-fancyimpute
Requires:	python3-pyminhash
Requires:	python3-pandas
Requires:	python3-numpy
Requires:	python3-scipy
Requires:	python3-scikit-learn
Requires:	python3-networkx
Requires:	python3-Levenshtein
Requires:	python3-thefuzz
Requires:	python3-modAL-python
Requires:	python3-openpyxl
Requires:	python3-pytest
Requires:	python3-fancyimpute
Requires:	python3-pyminhash
Requires:	python3-matplotlib
Requires:	python3-jupyterlab
Requires:	python3-sphinx
Requires:	python3-nbsphinx
Requires:	python3-sphinx-rtd-theme
Requires:	python3-sphinx
Requires:	python3-nbsphinx
Requires:	python3-sphinx-rtd-theme

%description
<!--- BADGES: START --->
[![Version](https://img.shields.io/pypi/v/deduplipy)](https://pypi.org/project/deduplipy/)
![](https://img.shields.io/github/license/fritshermans/deduplipy)
[![Downloads](https://pepy.tech/badge/deduplipy)](https://pepy.tech/project/deduplipy)
[![Conda - Platform](https://img.shields.io/conda/pn/conda-forge/deduplipy?logo=anaconda&style=flat)][#conda-forge-package]
[![Conda (channel only)](https://img.shields.io/conda/vn/conda-forge/deduplipy?logo=anaconda&style=flat&color=orange)][#conda-forge-package]
[![Conda Recipe](https://img.shields.io/static/v1?logo=conda-forge&style=flat&color=green&label=recipe&message=deduplipy)][#conda-forge-feedstock]
[![Docs - GitHub.io](https://img.shields.io/static/v1?logo=readthdocs&style=flat&color=pink&label=docs&message=deduplipy)][#docs-package]

[#pypi-package]: https://pypi.org/project/deduplipy/
[#conda-forge-package]: https://anaconda.org/conda-forge/deduplipy
[#conda-forge-feedstock]: https://github.com/conda-forge/deduplipy-feedstock
[#docs-package]: https://deduplipy.readthedocs.io/en/latest/
<!--- BADGES: END --->

# DedupliPy

<a href="https://deduplipy.readthedocs.io/en/latest/"><img src="https://deduplipy.readthedocs.io/en/latest/_images/logo.png" width="15%" height="15%" align="left" /></a>

Deduplication is the task to combine different representations of the same real world entity. This package implements
deduplication using active learning. Active learning allows for rapid training without having to provide a large,
manually labelled dataset.

DedupliPy is an end-to-end solution with advantages over existing solutions:

- active learning; no large manually labelled dataset required
- during active learning, the user gets notified when the model converged and training may be finished
- works out of the box, advanced users can choose settings as desired (custom blocking rules, custom metrics,
  interaction features)

Developed by [Frits Hermans](https://www.linkedin.com/in/frits-hermans-data-scientist/)

## Documentation

Documentation can be found [here](https://deduplipy.readthedocs.io/en/latest/)

## Installation

### Normal installation

**With pip**

Install directly from PyPI.

```
pip install deduplipy
```

**With conda**

Install using conda from conda-forge channel.

```
conda install -c conda-forge deduplipy
```


### Install to contribute

Clone this Github repo and install in editable mode:

```
python -m pip install -e ".[dev]"
python setup.py develop
```

## Usage

Apply deduplication your Pandas dataframe `df` as follows:

```python
myDedupliPy = Deduplicator(col_names=['name', 'address'])
myDedupliPy.fit(df)
```

This will start the interactive learning session in which you provide input on whether a pair is a match (y) or not (n).
During active learning you will get the message that training may be finished once algorithm training has converged.
Predictions on (new) data are obtained as follows:

```python
result = myDedupliPy.predict(df)
```


%package -n python3-DedupliPy
Summary:	End-to-end deduplication solution
Provides:	python-DedupliPy
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-DedupliPy
<!--- BADGES: START --->
[![Version](https://img.shields.io/pypi/v/deduplipy)](https://pypi.org/project/deduplipy/)
![](https://img.shields.io/github/license/fritshermans/deduplipy)
[![Downloads](https://pepy.tech/badge/deduplipy)](https://pepy.tech/project/deduplipy)
[![Conda - Platform](https://img.shields.io/conda/pn/conda-forge/deduplipy?logo=anaconda&style=flat)][#conda-forge-package]
[![Conda (channel only)](https://img.shields.io/conda/vn/conda-forge/deduplipy?logo=anaconda&style=flat&color=orange)][#conda-forge-package]
[![Conda Recipe](https://img.shields.io/static/v1?logo=conda-forge&style=flat&color=green&label=recipe&message=deduplipy)][#conda-forge-feedstock]
[![Docs - GitHub.io](https://img.shields.io/static/v1?logo=readthdocs&style=flat&color=pink&label=docs&message=deduplipy)][#docs-package]

[#pypi-package]: https://pypi.org/project/deduplipy/
[#conda-forge-package]: https://anaconda.org/conda-forge/deduplipy
[#conda-forge-feedstock]: https://github.com/conda-forge/deduplipy-feedstock
[#docs-package]: https://deduplipy.readthedocs.io/en/latest/
<!--- BADGES: END --->

# DedupliPy

<a href="https://deduplipy.readthedocs.io/en/latest/"><img src="https://deduplipy.readthedocs.io/en/latest/_images/logo.png" width="15%" height="15%" align="left" /></a>

Deduplication is the task to combine different representations of the same real world entity. This package implements
deduplication using active learning. Active learning allows for rapid training without having to provide a large,
manually labelled dataset.

DedupliPy is an end-to-end solution with advantages over existing solutions:

- active learning; no large manually labelled dataset required
- during active learning, the user gets notified when the model converged and training may be finished
- works out of the box, advanced users can choose settings as desired (custom blocking rules, custom metrics,
  interaction features)

Developed by [Frits Hermans](https://www.linkedin.com/in/frits-hermans-data-scientist/)

## Documentation

Documentation can be found [here](https://deduplipy.readthedocs.io/en/latest/)

## Installation

### Normal installation

**With pip**

Install directly from PyPI.

```
pip install deduplipy
```

**With conda**

Install using conda from conda-forge channel.

```
conda install -c conda-forge deduplipy
```


### Install to contribute

Clone this Github repo and install in editable mode:

```
python -m pip install -e ".[dev]"
python setup.py develop
```

## Usage

Apply deduplication your Pandas dataframe `df` as follows:

```python
myDedupliPy = Deduplicator(col_names=['name', 'address'])
myDedupliPy.fit(df)
```

This will start the interactive learning session in which you provide input on whether a pair is a match (y) or not (n).
During active learning you will get the message that training may be finished once algorithm training has converged.
Predictions on (new) data are obtained as follows:

```python
result = myDedupliPy.predict(df)
```


%package help
Summary:	Development documents and examples for DedupliPy
Provides:	python3-DedupliPy-doc
%description help
<!--- BADGES: START --->
[![Version](https://img.shields.io/pypi/v/deduplipy)](https://pypi.org/project/deduplipy/)
![](https://img.shields.io/github/license/fritshermans/deduplipy)
[![Downloads](https://pepy.tech/badge/deduplipy)](https://pepy.tech/project/deduplipy)
[![Conda - Platform](https://img.shields.io/conda/pn/conda-forge/deduplipy?logo=anaconda&style=flat)][#conda-forge-package]
[![Conda (channel only)](https://img.shields.io/conda/vn/conda-forge/deduplipy?logo=anaconda&style=flat&color=orange)][#conda-forge-package]
[![Conda Recipe](https://img.shields.io/static/v1?logo=conda-forge&style=flat&color=green&label=recipe&message=deduplipy)][#conda-forge-feedstock]
[![Docs - GitHub.io](https://img.shields.io/static/v1?logo=readthdocs&style=flat&color=pink&label=docs&message=deduplipy)][#docs-package]

[#pypi-package]: https://pypi.org/project/deduplipy/
[#conda-forge-package]: https://anaconda.org/conda-forge/deduplipy
[#conda-forge-feedstock]: https://github.com/conda-forge/deduplipy-feedstock
[#docs-package]: https://deduplipy.readthedocs.io/en/latest/
<!--- BADGES: END --->

# DedupliPy

<a href="https://deduplipy.readthedocs.io/en/latest/"><img src="https://deduplipy.readthedocs.io/en/latest/_images/logo.png" width="15%" height="15%" align="left" /></a>

Deduplication is the task to combine different representations of the same real world entity. This package implements
deduplication using active learning. Active learning allows for rapid training without having to provide a large,
manually labelled dataset.

DedupliPy is an end-to-end solution with advantages over existing solutions:

- active learning; no large manually labelled dataset required
- during active learning, the user gets notified when the model converged and training may be finished
- works out of the box, advanced users can choose settings as desired (custom blocking rules, custom metrics,
  interaction features)

Developed by [Frits Hermans](https://www.linkedin.com/in/frits-hermans-data-scientist/)

## Documentation

Documentation can be found [here](https://deduplipy.readthedocs.io/en/latest/)

## Installation

### Normal installation

**With pip**

Install directly from PyPI.

```
pip install deduplipy
```

**With conda**

Install using conda from conda-forge channel.

```
conda install -c conda-forge deduplipy
```


### Install to contribute

Clone this Github repo and install in editable mode:

```
python -m pip install -e ".[dev]"
python setup.py develop
```

## Usage

Apply deduplication your Pandas dataframe `df` as follows:

```python
myDedupliPy = Deduplicator(col_names=['name', 'address'])
myDedupliPy.fit(df)
```

This will start the interactive learning session in which you provide input on whether a pair is a match (y) or not (n).
During active learning you will get the message that training may be finished once algorithm training has converged.
Predictions on (new) data are obtained as follows:

```python
result = myDedupliPy.predict(df)
```


%prep
%autosetup -n DedupliPy-0.8

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-DedupliPy -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 0.8-1
- Package Spec generated