1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
|
%global _empty_manifest_terminate_build 0
Name: python-deepecho
Version: 0.4.0
Release: 1
Summary: Create sequential synthetic data of mixed types using a GAN.
License: BSL-1.1
URL: https://github.com/sdv-dev/DeepEcho
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/98/84/7040528e28a57d7d2e6d28b40896df82501a38fa179f32d289ae974f1552/deepecho-0.4.0.tar.gz
BuildArch: noarch
Requires: python3-tqdm
Requires: python3-numpy
Requires: python3-pandas
Requires: python3-torch
Requires: python3-numpy
Requires: python3-pandas
Requires: python3-torch
Requires: python3-setuptools
Requires: python3-bumpversion
Requires: python3-pip
Requires: python3-watchdog
Requires: python3-flake8
Requires: python3-flake8-absolute-import
Requires: python3-flake8-docstrings
Requires: python3-flake8-sfs
Requires: python3-isort
Requires: python3-pylint
Requires: python3-flake8-builtins
Requires: python3-flake8-debugger
Requires: python3-flake8-mock
Requires: python3-dlint
Requires: python3-flake8-eradicate
Requires: python3-flake8-mutable
Requires: python3-flake8-fixme
Requires: python3-flake8-multiline-containers
Requires: python3-flake8-quotes
Requires: python3-flake8-variables-names
Requires: python3-pep8-naming
Requires: python3-flake8-expression-complexity
Requires: python3-flake8-print
Requires: python3-autoflake
Requires: python3-autopep8
Requires: python3-twine
Requires: python3-wheel
Requires: python3-coverage
Requires: python3-tox
Requires: python3-invoke
Requires: python3-pytest
Requires: python3-pytest-cov
Requires: python3-pytest-rerunfailures
Requires: python3-jupyter
Requires: python3-rundoc
Requires: python3-pytest
Requires: python3-pytest-cov
Requires: python3-pytest-rerunfailures
Requires: python3-jupyter
Requires: python3-rundoc
%description
<div align="center">
<a href="https://datacebo.com"><img align="center" width=40% src="https://github.com/sdv-dev/SDV/blob/master/docs/images/DataCebo.png"></img></a>
</div>
<br/>
<br/>
[The Synthetic Data Vault Project](https://sdv.dev) was first created at MIT's [Data to AI Lab](
https://dai.lids.mit.edu/) in 2016. After 4 years of research and traction with enterprise, we
created [DataCebo](https://datacebo.com) in 2020 with the goal of growing the project.
Today, DataCebo is the proud developer of SDV, the largest ecosystem for
synthetic data generation & evaluation. It is home to multiple libraries that support synthetic
data, including:
* 🔄 Data discovery & transformation. Reverse the transforms to reproduce realistic data.
* 🧠Multiple machine learning models -- ranging from Copulas to Deep Learning -- to create tabular,
multi table and time series data.
* 📊 Measuring quality and privacy of synthetic data, and comparing different synthetic data
generation models.
[Get started using the SDV package](https://sdv.dev/SDV/getting_started/install.html) -- a fully
integrated solution and your one-stop shop for synthetic data. Or, use the standalone libraries
for specific needs.
# History
## 0.3.0 - 2021-11-15
This release adds support for Python 3.9 and updates dependencies to ensure compatibility with the rest
of the SDV ecosystem.
* Add support for Python 3.9 - Issue [#41](https://github.com/sdv-dev/DeepEcho/issues/41) by @fealho
* Add pip check to CI workflows internal improvements - Issue [#39](https://github.com/sdv-dev/DeepEcho/issues/39) by @pvk-developer
* Add support for pylint>2.7.2 housekeeping - Issue [#33](https://github.com/sdv-dev/DeepEcho/issues/33) by @fealho
* Add support for torch>=1.8 housekeeping - Issue [#32](https://github.com/sdv-dev/DeepEcho/issues/32) by @fealho
## 0.2.1 - 2021-10-12
This release fixes a bug with how DeepEcho handles NaN values.
* Handling NaN's bug - Issue [#35](https://github.com/sdv-dev/DeepEcho/issues/35) by @fealho
## 0.2.0 - 2021-02-24
Maintenance release to update dependencies and ensure compatibility with the rest
of the SDV ecosystem libraries.
## 0.1.4 - 2020-10-16
Minor maintenance version to update dependencies and documentation, and
also make the demo data loading function parse dates properly.
## 0.1.3 - 2020-10-16
This version includes several minor improvements to the PAR model and the
way the sequences are generated:
* Sequences can now be generated without dropping the sequence index.
* The PAR model learns the min and max length of the sequence from the input data.
* NaN values are properly supported for both categorical and numerical columns.
* NaN values are generated for numerical columns only if there were NaNs in the input data.
* Constant columns can now be modeled.
## 0.1.2 - 2020-09-15
Add BasicGAN Model and additional benchmarking results.
## 0.1.1 - 2020-08-15
This release includes a few new features to make DeepEcho work on more types of datasets
as well as to making it easier to add new datasets to the benchmarking framework.
* Add `segment_size` and `sequence_index` arguments to `fit` method.
* Add `sequence_length` as an optional argument to `sample` and `sample_sequence` methods.
* Update the Dataset storage format to add `sequence_index` and versioning.
* Separate the sequence assembling process in its own `deepecho.sequences` module.
* Add function `make_dataset` to create a dataset from a dataframe and just a few column names.
* Add notebook tutorial to show how to create a datasets and use them.
## 0.1.0 - 2020-08-11
First release.
Included Features:
* PARModel
* Demo dataset and tutorials
* Benchmarking Framework
* Support and instructions for benchmarking on a Kubernetes cluster.
%package -n python3-deepecho
Summary: Create sequential synthetic data of mixed types using a GAN.
Provides: python-deepecho
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-deepecho
<div align="center">
<a href="https://datacebo.com"><img align="center" width=40% src="https://github.com/sdv-dev/SDV/blob/master/docs/images/DataCebo.png"></img></a>
</div>
<br/>
<br/>
[The Synthetic Data Vault Project](https://sdv.dev) was first created at MIT's [Data to AI Lab](
https://dai.lids.mit.edu/) in 2016. After 4 years of research and traction with enterprise, we
created [DataCebo](https://datacebo.com) in 2020 with the goal of growing the project.
Today, DataCebo is the proud developer of SDV, the largest ecosystem for
synthetic data generation & evaluation. It is home to multiple libraries that support synthetic
data, including:
* 🔄 Data discovery & transformation. Reverse the transforms to reproduce realistic data.
* 🧠Multiple machine learning models -- ranging from Copulas to Deep Learning -- to create tabular,
multi table and time series data.
* 📊 Measuring quality and privacy of synthetic data, and comparing different synthetic data
generation models.
[Get started using the SDV package](https://sdv.dev/SDV/getting_started/install.html) -- a fully
integrated solution and your one-stop shop for synthetic data. Or, use the standalone libraries
for specific needs.
# History
## 0.3.0 - 2021-11-15
This release adds support for Python 3.9 and updates dependencies to ensure compatibility with the rest
of the SDV ecosystem.
* Add support for Python 3.9 - Issue [#41](https://github.com/sdv-dev/DeepEcho/issues/41) by @fealho
* Add pip check to CI workflows internal improvements - Issue [#39](https://github.com/sdv-dev/DeepEcho/issues/39) by @pvk-developer
* Add support for pylint>2.7.2 housekeeping - Issue [#33](https://github.com/sdv-dev/DeepEcho/issues/33) by @fealho
* Add support for torch>=1.8 housekeeping - Issue [#32](https://github.com/sdv-dev/DeepEcho/issues/32) by @fealho
## 0.2.1 - 2021-10-12
This release fixes a bug with how DeepEcho handles NaN values.
* Handling NaN's bug - Issue [#35](https://github.com/sdv-dev/DeepEcho/issues/35) by @fealho
## 0.2.0 - 2021-02-24
Maintenance release to update dependencies and ensure compatibility with the rest
of the SDV ecosystem libraries.
## 0.1.4 - 2020-10-16
Minor maintenance version to update dependencies and documentation, and
also make the demo data loading function parse dates properly.
## 0.1.3 - 2020-10-16
This version includes several minor improvements to the PAR model and the
way the sequences are generated:
* Sequences can now be generated without dropping the sequence index.
* The PAR model learns the min and max length of the sequence from the input data.
* NaN values are properly supported for both categorical and numerical columns.
* NaN values are generated for numerical columns only if there were NaNs in the input data.
* Constant columns can now be modeled.
## 0.1.2 - 2020-09-15
Add BasicGAN Model and additional benchmarking results.
## 0.1.1 - 2020-08-15
This release includes a few new features to make DeepEcho work on more types of datasets
as well as to making it easier to add new datasets to the benchmarking framework.
* Add `segment_size` and `sequence_index` arguments to `fit` method.
* Add `sequence_length` as an optional argument to `sample` and `sample_sequence` methods.
* Update the Dataset storage format to add `sequence_index` and versioning.
* Separate the sequence assembling process in its own `deepecho.sequences` module.
* Add function `make_dataset` to create a dataset from a dataframe and just a few column names.
* Add notebook tutorial to show how to create a datasets and use them.
## 0.1.0 - 2020-08-11
First release.
Included Features:
* PARModel
* Demo dataset and tutorials
* Benchmarking Framework
* Support and instructions for benchmarking on a Kubernetes cluster.
%package help
Summary: Development documents and examples for deepecho
Provides: python3-deepecho-doc
%description help
<div align="center">
<a href="https://datacebo.com"><img align="center" width=40% src="https://github.com/sdv-dev/SDV/blob/master/docs/images/DataCebo.png"></img></a>
</div>
<br/>
<br/>
[The Synthetic Data Vault Project](https://sdv.dev) was first created at MIT's [Data to AI Lab](
https://dai.lids.mit.edu/) in 2016. After 4 years of research and traction with enterprise, we
created [DataCebo](https://datacebo.com) in 2020 with the goal of growing the project.
Today, DataCebo is the proud developer of SDV, the largest ecosystem for
synthetic data generation & evaluation. It is home to multiple libraries that support synthetic
data, including:
* 🔄 Data discovery & transformation. Reverse the transforms to reproduce realistic data.
* 🧠Multiple machine learning models -- ranging from Copulas to Deep Learning -- to create tabular,
multi table and time series data.
* 📊 Measuring quality and privacy of synthetic data, and comparing different synthetic data
generation models.
[Get started using the SDV package](https://sdv.dev/SDV/getting_started/install.html) -- a fully
integrated solution and your one-stop shop for synthetic data. Or, use the standalone libraries
for specific needs.
# History
## 0.3.0 - 2021-11-15
This release adds support for Python 3.9 and updates dependencies to ensure compatibility with the rest
of the SDV ecosystem.
* Add support for Python 3.9 - Issue [#41](https://github.com/sdv-dev/DeepEcho/issues/41) by @fealho
* Add pip check to CI workflows internal improvements - Issue [#39](https://github.com/sdv-dev/DeepEcho/issues/39) by @pvk-developer
* Add support for pylint>2.7.2 housekeeping - Issue [#33](https://github.com/sdv-dev/DeepEcho/issues/33) by @fealho
* Add support for torch>=1.8 housekeeping - Issue [#32](https://github.com/sdv-dev/DeepEcho/issues/32) by @fealho
## 0.2.1 - 2021-10-12
This release fixes a bug with how DeepEcho handles NaN values.
* Handling NaN's bug - Issue [#35](https://github.com/sdv-dev/DeepEcho/issues/35) by @fealho
## 0.2.0 - 2021-02-24
Maintenance release to update dependencies and ensure compatibility with the rest
of the SDV ecosystem libraries.
## 0.1.4 - 2020-10-16
Minor maintenance version to update dependencies and documentation, and
also make the demo data loading function parse dates properly.
## 0.1.3 - 2020-10-16
This version includes several minor improvements to the PAR model and the
way the sequences are generated:
* Sequences can now be generated without dropping the sequence index.
* The PAR model learns the min and max length of the sequence from the input data.
* NaN values are properly supported for both categorical and numerical columns.
* NaN values are generated for numerical columns only if there were NaNs in the input data.
* Constant columns can now be modeled.
## 0.1.2 - 2020-09-15
Add BasicGAN Model and additional benchmarking results.
## 0.1.1 - 2020-08-15
This release includes a few new features to make DeepEcho work on more types of datasets
as well as to making it easier to add new datasets to the benchmarking framework.
* Add `segment_size` and `sequence_index` arguments to `fit` method.
* Add `sequence_length` as an optional argument to `sample` and `sample_sequence` methods.
* Update the Dataset storage format to add `sequence_index` and versioning.
* Separate the sequence assembling process in its own `deepecho.sequences` module.
* Add function `make_dataset` to create a dataset from a dataframe and just a few column names.
* Add notebook tutorial to show how to create a datasets and use them.
## 0.1.0 - 2020-08-11
First release.
Included Features:
* PARModel
* Demo dataset and tutorials
* Benchmarking Framework
* Support and instructions for benchmarking on a Kubernetes cluster.
%prep
%autosetup -n deepecho-0.4.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-deepecho -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.0-1
- Package Spec generated
|