summaryrefslogtreecommitdiff
path: root/python-deeppavlov.spec
blob: 5e4d481c6fbc7083c145d5d0bc51915d145d98e6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
%global _empty_manifest_terminate_build 0
Name:		python-deeppavlov
Version:	1.1.1
Release:	1
Summary:	An open source library for building end-to-end dialog systems and training chatbots.
License:	Apache License, Version 2.0
URL:		https://github.com/deeppavlov/DeepPavlov
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/63/ca/92187ea41f6a26200ba1bbdb46a4b894d088ba4cfc7ef22e716e5609e5ba/deeppavlov-1.1.1.tar.gz
BuildArch:	noarch

Requires:	python3-aio-pika
Requires:	python3-fastapi
Requires:	python3-filelock
Requires:	python3-nltk
Requires:	python3-numpy
Requires:	python3-overrides
Requires:	python3-pandas
Requires:	python3-prometheus-client
Requires:	python3-pydantic
Requires:	python3-pybind11
Requires:	python3-requests
Requires:	python3-scikit-learn
Requires:	python3-scipy
Requires:	python3-tqdm
Requires:	python3-uvicorn
Requires:	python3-sphinx-rtd-theme
Requires:	python3-nbsphinx
Requires:	python3-ipykernel
Requires:	python3-jinja2
Requires:	python3-sphinx-copybutton
Requires:	python3-pandoc
Requires:	python3-ipython-genutils
Requires:	python3-sphinx
Requires:	python3-sphinx
Requires:	python3-boto3
Requires:	python3-flake8
Requires:	python3-pytest
Requires:	python3-pytest-instafail
Requires:	python3-pexpect

%description
[![License Apache 2.0](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](https://github.com/deeppavlov/DeepPavlov/blob/master/LICENSE)
![Python 3.6, 3.7, 3.8, 3.9, 3.10](https://img.shields.io/badge/python-3.6%20%7C%203.7%20%7C%203.8%20%7C%203.9%20%7C%203.10-green.svg)
[![Downloads](https://pepy.tech/badge/deeppavlov)](https://pepy.tech/project/deeppavlov)
<img align="right" height="27%" width="27%" src="https://raw.githubusercontent.com/deeppavlov/DeepPavlov/master/docs/_static/deeppavlov_logo.png"/>

DeepPavlov is an open-source conversational AI library built on [PyTorch](https://pytorch.org/).

DeepPavlov is designed for
* development of production ready chat-bots and complex conversational systems,
* research in the area of NLP and, particularly, of dialog systems.

## Quick Links

* Demo [*demo.deeppavlov.ai*](https://demo.deeppavlov.ai/)
* Documentation [*docs.deeppavlov.ai*](http://docs.deeppavlov.ai/)
    * Model List [*docs:features/*](http://docs.deeppavlov.ai/en/master/features/overview.html)
    * Contribution Guide [*docs:contribution_guide/*](http://docs.deeppavlov.ai/en/master/devguides/contribution_guide.html)
* Issues [*github/issues/*](https://github.com/deeppavlov/DeepPavlov/issues)
* Forum [*forum.deeppavlov.ai*](https://forum.deeppavlov.ai/)
* Blogs [*medium.com/deeppavlov*](https://medium.com/deeppavlov)
* [Extended colab tutorials](https://github.com/deeppavlov/dp_tutorials)
* Docker Hub [*hub.docker.com/u/deeppavlov/*](https://hub.docker.com/u/deeppavlov/) 
    * Docker Images Documentation [*docs:docker-images/*](http://docs.deeppavlov.ai/en/master/intro/installation.html#docker-images)

Please leave us [your feedback](https://forms.gle/i64fowQmiVhMMC7f9) on how we can improve the DeepPavlov framework.

**Models**

[Named Entity Recognition](http://docs.deeppavlov.ai/en/master/features/models/NER.html) | [Intent/Sentence Classification](http://docs.deeppavlov.ai/en/master/features/models/classifiers.html) |

[Question Answering over Text (SQuAD)](http://docs.deeppavlov.ai/en/master/features/models/SQuAD.html) | [Knowledge Base Question Answering](http://docs.deeppavlov.ai/en/master/features/models/kbqa.html)

[Sentence Similarity/Ranking](http://docs.deeppavlov.ai/en/master/features/models/neural_ranking.html) | [TF-IDF Ranking](http://docs.deeppavlov.ai/en/master/features/models/tfidf_ranking.html) 

[Automatic Spelling Correction](http://docs.deeppavlov.ai/en/master/features/models/spelling_correction.html) | [Entity Linking](http://docs.deeppavlov.ai/en/master/features/models/entity_linking.html)

[Open Domain Questions Answering](http://docs.deeppavlov.ai/en/master/features/models/odqa.html) | [Russian SuperGLUE](http://docs.deeppavlov.ai/en/master/features/models/superglue.html)

**Embeddings**

[BERT embeddings for the Russian, Polish, Bulgarian, Czech, and informal English](http://docs.deeppavlov.ai/en/master/features/pretrained_vectors.html#bert)

[ELMo embeddings for the Russian language](http://docs.deeppavlov.ai/en/master/features/pretrained_vectors.html#elmo)

[FastText embeddings for the Russian language](http://docs.deeppavlov.ai/en/master/features/pretrained_vectors.html#fasttext)

**Auto ML**

[Tuning Models](http://docs.deeppavlov.ai/en/master/features/hypersearch.html)

**Integrations**

[REST API](http://docs.deeppavlov.ai/en/master/integrations/rest_api.html) | [Socket API](http://docs.deeppavlov.ai/en/master/integrations/socket_api.html)

[Amazon AWS](http://docs.deeppavlov.ai/en/master/integrations/aws_ec2.html)

## Installation

0. We support `Linux` platform, `Python 3.6`, `3.7`, `3.8`, `3.9` and `3.10`
    * **`Python 3.5` is not supported!**

1. Create and activate a virtual environment:
    * `Linux`
    ```
    python -m venv env
    source ./env/bin/activate
    ```
2. Install the package inside the environment:
    ```
    pip install deeppavlov
    ```

## QuickStart

There is a bunch of great pre-trained NLP models in DeepPavlov. Each model is
determined by its config file.

List of models is available on
[the doc page](http://docs.deeppavlov.ai/en/master/features/overview.html) in
the `deeppavlov.configs` (Python):

```python
from deeppavlov import configs
```

When you're decided on the model (+ config file), there are two ways to train,
evaluate and infer it:

* via [Command line interface (CLI)](https://github.com/deeppavlov/DeepPavlov/blob/master/#command-line-interface-cli) and
* via [Python](https://github.com/deeppavlov/DeepPavlov/blob/master/#python).

#### GPU requirements

By default, DeepPavlov installs models requirements from PyPI. PyTorch from PyPI could not support your device CUDA
capability. To run supported DeepPavlov models on GPU you should have [CUDA](https://developer.nvidia.com/cuda-toolkit)
compatible with used GPU and [PyTorch version](https://github.com/deeppavlov/DeepPavlov/blob/master/deeppavlov/requirements/pytorch.txt) required by DeepPavlov models.
See [docs](https://docs.deeppavlov.ai/en/master/intro/quick_start.html#using-gpu) for details.

### Command line interface (CLI)

To get predictions from a model interactively through CLI, run

```bash
python -m deeppavlov interact <config_path> [-d] [-i]
```

* `-d` downloads required data - pretrained model files and embeddings (optional).
* `-i` installs model requirements (optional).

You can train it in the same simple way:

```bash
python -m deeppavlov train <config_path> [-d] [-i]
```

Dataset will be downloaded regardless of whether there was `-d` flag or not.

To train on your own data you need to modify dataset reader path in the
[train config doc](http://docs.deeppavlov.ai/en/master/intro/config_description.html#train-config).
The data format is specified in the corresponding model doc page. 

There are even more actions you can perform with configs:

```bash
python -m deeppavlov <action> <config_path> [-d] [-i]
```

* `<action>` can be
    * `install` to install model requirements (same as `-i`),
    * `download` to download model's data (same as `-d`),
    * `train` to train the model on the data specified in the config file,
    * `evaluate` to calculate metrics on the same dataset,
    * `interact` to interact via CLI,
    * `riseapi` to run a REST API server (see
    [doc](http://docs.deeppavlov.ai/en/master/integrations/rest_api.html)),
    * `predict` to get prediction for samples from *stdin* or from
      *<file_path>* if `-f <file_path>` is specified.
* `<config_path>` specifies path (or name) of model's config file
* `-d` downloads required data
* `-i` installs model requirements


### Python

To get predictions from a model interactively through Python, run

```python
from deeppavlov import build_model

model = build_model(<config_path>, install=True, download=True)

# get predictions for 'input_text1', 'input_text2'
model(['input_text1', 'input_text2'])
```
where
* `install=True` installs model requirements (optional),
* `download=True` downloads required data from web - pretrained model files and embeddings (optional),
* `<config_path>` is model name (e.g. `'ner_ontonotes_bert_mult'`), path to the chosen model's config file (e.g.
  `"deeppavlov/configs/ner/ner_ontonotes_bert_mult.json"`),  or `deeppavlov.configs` attribute (e.g.
  `deeppavlov.configs.ner.ner_ontonotes_bert_mult` without quotation marks).

You can train it in the same simple way:

```python
from deeppavlov import train_model 

model = train_model(<config_path>, install=True, download=True)
```

To train on your own data you need to modify dataset reader path in the
[train config doc](http://docs.deeppavlov.ai/en/master/intro/config_description.html#train-config).
The data format is specified in the corresponding model doc page. 

You can also calculate metrics on the dataset specified in your config file:

```python
from deeppavlov import evaluate_model 

model = evaluate_model(<config_path>, install=True, download=True)
```

DeepPavlov also [allows](https://docs.deeppavlov.ai/en/master/features/python.html) to build a model from components for
inference using Python.

## License

DeepPavlov is Apache 2.0 - licensed.


%package -n python3-deeppavlov
Summary:	An open source library for building end-to-end dialog systems and training chatbots.
Provides:	python-deeppavlov
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-deeppavlov
[![License Apache 2.0](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](https://github.com/deeppavlov/DeepPavlov/blob/master/LICENSE)
![Python 3.6, 3.7, 3.8, 3.9, 3.10](https://img.shields.io/badge/python-3.6%20%7C%203.7%20%7C%203.8%20%7C%203.9%20%7C%203.10-green.svg)
[![Downloads](https://pepy.tech/badge/deeppavlov)](https://pepy.tech/project/deeppavlov)
<img align="right" height="27%" width="27%" src="https://raw.githubusercontent.com/deeppavlov/DeepPavlov/master/docs/_static/deeppavlov_logo.png"/>

DeepPavlov is an open-source conversational AI library built on [PyTorch](https://pytorch.org/).

DeepPavlov is designed for
* development of production ready chat-bots and complex conversational systems,
* research in the area of NLP and, particularly, of dialog systems.

## Quick Links

* Demo [*demo.deeppavlov.ai*](https://demo.deeppavlov.ai/)
* Documentation [*docs.deeppavlov.ai*](http://docs.deeppavlov.ai/)
    * Model List [*docs:features/*](http://docs.deeppavlov.ai/en/master/features/overview.html)
    * Contribution Guide [*docs:contribution_guide/*](http://docs.deeppavlov.ai/en/master/devguides/contribution_guide.html)
* Issues [*github/issues/*](https://github.com/deeppavlov/DeepPavlov/issues)
* Forum [*forum.deeppavlov.ai*](https://forum.deeppavlov.ai/)
* Blogs [*medium.com/deeppavlov*](https://medium.com/deeppavlov)
* [Extended colab tutorials](https://github.com/deeppavlov/dp_tutorials)
* Docker Hub [*hub.docker.com/u/deeppavlov/*](https://hub.docker.com/u/deeppavlov/) 
    * Docker Images Documentation [*docs:docker-images/*](http://docs.deeppavlov.ai/en/master/intro/installation.html#docker-images)

Please leave us [your feedback](https://forms.gle/i64fowQmiVhMMC7f9) on how we can improve the DeepPavlov framework.

**Models**

[Named Entity Recognition](http://docs.deeppavlov.ai/en/master/features/models/NER.html) | [Intent/Sentence Classification](http://docs.deeppavlov.ai/en/master/features/models/classifiers.html) |

[Question Answering over Text (SQuAD)](http://docs.deeppavlov.ai/en/master/features/models/SQuAD.html) | [Knowledge Base Question Answering](http://docs.deeppavlov.ai/en/master/features/models/kbqa.html)

[Sentence Similarity/Ranking](http://docs.deeppavlov.ai/en/master/features/models/neural_ranking.html) | [TF-IDF Ranking](http://docs.deeppavlov.ai/en/master/features/models/tfidf_ranking.html) 

[Automatic Spelling Correction](http://docs.deeppavlov.ai/en/master/features/models/spelling_correction.html) | [Entity Linking](http://docs.deeppavlov.ai/en/master/features/models/entity_linking.html)

[Open Domain Questions Answering](http://docs.deeppavlov.ai/en/master/features/models/odqa.html) | [Russian SuperGLUE](http://docs.deeppavlov.ai/en/master/features/models/superglue.html)

**Embeddings**

[BERT embeddings for the Russian, Polish, Bulgarian, Czech, and informal English](http://docs.deeppavlov.ai/en/master/features/pretrained_vectors.html#bert)

[ELMo embeddings for the Russian language](http://docs.deeppavlov.ai/en/master/features/pretrained_vectors.html#elmo)

[FastText embeddings for the Russian language](http://docs.deeppavlov.ai/en/master/features/pretrained_vectors.html#fasttext)

**Auto ML**

[Tuning Models](http://docs.deeppavlov.ai/en/master/features/hypersearch.html)

**Integrations**

[REST API](http://docs.deeppavlov.ai/en/master/integrations/rest_api.html) | [Socket API](http://docs.deeppavlov.ai/en/master/integrations/socket_api.html)

[Amazon AWS](http://docs.deeppavlov.ai/en/master/integrations/aws_ec2.html)

## Installation

0. We support `Linux` platform, `Python 3.6`, `3.7`, `3.8`, `3.9` and `3.10`
    * **`Python 3.5` is not supported!**

1. Create and activate a virtual environment:
    * `Linux`
    ```
    python -m venv env
    source ./env/bin/activate
    ```
2. Install the package inside the environment:
    ```
    pip install deeppavlov
    ```

## QuickStart

There is a bunch of great pre-trained NLP models in DeepPavlov. Each model is
determined by its config file.

List of models is available on
[the doc page](http://docs.deeppavlov.ai/en/master/features/overview.html) in
the `deeppavlov.configs` (Python):

```python
from deeppavlov import configs
```

When you're decided on the model (+ config file), there are two ways to train,
evaluate and infer it:

* via [Command line interface (CLI)](https://github.com/deeppavlov/DeepPavlov/blob/master/#command-line-interface-cli) and
* via [Python](https://github.com/deeppavlov/DeepPavlov/blob/master/#python).

#### GPU requirements

By default, DeepPavlov installs models requirements from PyPI. PyTorch from PyPI could not support your device CUDA
capability. To run supported DeepPavlov models on GPU you should have [CUDA](https://developer.nvidia.com/cuda-toolkit)
compatible with used GPU and [PyTorch version](https://github.com/deeppavlov/DeepPavlov/blob/master/deeppavlov/requirements/pytorch.txt) required by DeepPavlov models.
See [docs](https://docs.deeppavlov.ai/en/master/intro/quick_start.html#using-gpu) for details.

### Command line interface (CLI)

To get predictions from a model interactively through CLI, run

```bash
python -m deeppavlov interact <config_path> [-d] [-i]
```

* `-d` downloads required data - pretrained model files and embeddings (optional).
* `-i` installs model requirements (optional).

You can train it in the same simple way:

```bash
python -m deeppavlov train <config_path> [-d] [-i]
```

Dataset will be downloaded regardless of whether there was `-d` flag or not.

To train on your own data you need to modify dataset reader path in the
[train config doc](http://docs.deeppavlov.ai/en/master/intro/config_description.html#train-config).
The data format is specified in the corresponding model doc page. 

There are even more actions you can perform with configs:

```bash
python -m deeppavlov <action> <config_path> [-d] [-i]
```

* `<action>` can be
    * `install` to install model requirements (same as `-i`),
    * `download` to download model's data (same as `-d`),
    * `train` to train the model on the data specified in the config file,
    * `evaluate` to calculate metrics on the same dataset,
    * `interact` to interact via CLI,
    * `riseapi` to run a REST API server (see
    [doc](http://docs.deeppavlov.ai/en/master/integrations/rest_api.html)),
    * `predict` to get prediction for samples from *stdin* or from
      *<file_path>* if `-f <file_path>` is specified.
* `<config_path>` specifies path (or name) of model's config file
* `-d` downloads required data
* `-i` installs model requirements


### Python

To get predictions from a model interactively through Python, run

```python
from deeppavlov import build_model

model = build_model(<config_path>, install=True, download=True)

# get predictions for 'input_text1', 'input_text2'
model(['input_text1', 'input_text2'])
```
where
* `install=True` installs model requirements (optional),
* `download=True` downloads required data from web - pretrained model files and embeddings (optional),
* `<config_path>` is model name (e.g. `'ner_ontonotes_bert_mult'`), path to the chosen model's config file (e.g.
  `"deeppavlov/configs/ner/ner_ontonotes_bert_mult.json"`),  or `deeppavlov.configs` attribute (e.g.
  `deeppavlov.configs.ner.ner_ontonotes_bert_mult` without quotation marks).

You can train it in the same simple way:

```python
from deeppavlov import train_model 

model = train_model(<config_path>, install=True, download=True)
```

To train on your own data you need to modify dataset reader path in the
[train config doc](http://docs.deeppavlov.ai/en/master/intro/config_description.html#train-config).
The data format is specified in the corresponding model doc page. 

You can also calculate metrics on the dataset specified in your config file:

```python
from deeppavlov import evaluate_model 

model = evaluate_model(<config_path>, install=True, download=True)
```

DeepPavlov also [allows](https://docs.deeppavlov.ai/en/master/features/python.html) to build a model from components for
inference using Python.

## License

DeepPavlov is Apache 2.0 - licensed.


%package help
Summary:	Development documents and examples for deeppavlov
Provides:	python3-deeppavlov-doc
%description help
[![License Apache 2.0](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](https://github.com/deeppavlov/DeepPavlov/blob/master/LICENSE)
![Python 3.6, 3.7, 3.8, 3.9, 3.10](https://img.shields.io/badge/python-3.6%20%7C%203.7%20%7C%203.8%20%7C%203.9%20%7C%203.10-green.svg)
[![Downloads](https://pepy.tech/badge/deeppavlov)](https://pepy.tech/project/deeppavlov)
<img align="right" height="27%" width="27%" src="https://raw.githubusercontent.com/deeppavlov/DeepPavlov/master/docs/_static/deeppavlov_logo.png"/>

DeepPavlov is an open-source conversational AI library built on [PyTorch](https://pytorch.org/).

DeepPavlov is designed for
* development of production ready chat-bots and complex conversational systems,
* research in the area of NLP and, particularly, of dialog systems.

## Quick Links

* Demo [*demo.deeppavlov.ai*](https://demo.deeppavlov.ai/)
* Documentation [*docs.deeppavlov.ai*](http://docs.deeppavlov.ai/)
    * Model List [*docs:features/*](http://docs.deeppavlov.ai/en/master/features/overview.html)
    * Contribution Guide [*docs:contribution_guide/*](http://docs.deeppavlov.ai/en/master/devguides/contribution_guide.html)
* Issues [*github/issues/*](https://github.com/deeppavlov/DeepPavlov/issues)
* Forum [*forum.deeppavlov.ai*](https://forum.deeppavlov.ai/)
* Blogs [*medium.com/deeppavlov*](https://medium.com/deeppavlov)
* [Extended colab tutorials](https://github.com/deeppavlov/dp_tutorials)
* Docker Hub [*hub.docker.com/u/deeppavlov/*](https://hub.docker.com/u/deeppavlov/) 
    * Docker Images Documentation [*docs:docker-images/*](http://docs.deeppavlov.ai/en/master/intro/installation.html#docker-images)

Please leave us [your feedback](https://forms.gle/i64fowQmiVhMMC7f9) on how we can improve the DeepPavlov framework.

**Models**

[Named Entity Recognition](http://docs.deeppavlov.ai/en/master/features/models/NER.html) | [Intent/Sentence Classification](http://docs.deeppavlov.ai/en/master/features/models/classifiers.html) |

[Question Answering over Text (SQuAD)](http://docs.deeppavlov.ai/en/master/features/models/SQuAD.html) | [Knowledge Base Question Answering](http://docs.deeppavlov.ai/en/master/features/models/kbqa.html)

[Sentence Similarity/Ranking](http://docs.deeppavlov.ai/en/master/features/models/neural_ranking.html) | [TF-IDF Ranking](http://docs.deeppavlov.ai/en/master/features/models/tfidf_ranking.html) 

[Automatic Spelling Correction](http://docs.deeppavlov.ai/en/master/features/models/spelling_correction.html) | [Entity Linking](http://docs.deeppavlov.ai/en/master/features/models/entity_linking.html)

[Open Domain Questions Answering](http://docs.deeppavlov.ai/en/master/features/models/odqa.html) | [Russian SuperGLUE](http://docs.deeppavlov.ai/en/master/features/models/superglue.html)

**Embeddings**

[BERT embeddings for the Russian, Polish, Bulgarian, Czech, and informal English](http://docs.deeppavlov.ai/en/master/features/pretrained_vectors.html#bert)

[ELMo embeddings for the Russian language](http://docs.deeppavlov.ai/en/master/features/pretrained_vectors.html#elmo)

[FastText embeddings for the Russian language](http://docs.deeppavlov.ai/en/master/features/pretrained_vectors.html#fasttext)

**Auto ML**

[Tuning Models](http://docs.deeppavlov.ai/en/master/features/hypersearch.html)

**Integrations**

[REST API](http://docs.deeppavlov.ai/en/master/integrations/rest_api.html) | [Socket API](http://docs.deeppavlov.ai/en/master/integrations/socket_api.html)

[Amazon AWS](http://docs.deeppavlov.ai/en/master/integrations/aws_ec2.html)

## Installation

0. We support `Linux` platform, `Python 3.6`, `3.7`, `3.8`, `3.9` and `3.10`
    * **`Python 3.5` is not supported!**

1. Create and activate a virtual environment:
    * `Linux`
    ```
    python -m venv env
    source ./env/bin/activate
    ```
2. Install the package inside the environment:
    ```
    pip install deeppavlov
    ```

## QuickStart

There is a bunch of great pre-trained NLP models in DeepPavlov. Each model is
determined by its config file.

List of models is available on
[the doc page](http://docs.deeppavlov.ai/en/master/features/overview.html) in
the `deeppavlov.configs` (Python):

```python
from deeppavlov import configs
```

When you're decided on the model (+ config file), there are two ways to train,
evaluate and infer it:

* via [Command line interface (CLI)](https://github.com/deeppavlov/DeepPavlov/blob/master/#command-line-interface-cli) and
* via [Python](https://github.com/deeppavlov/DeepPavlov/blob/master/#python).

#### GPU requirements

By default, DeepPavlov installs models requirements from PyPI. PyTorch from PyPI could not support your device CUDA
capability. To run supported DeepPavlov models on GPU you should have [CUDA](https://developer.nvidia.com/cuda-toolkit)
compatible with used GPU and [PyTorch version](https://github.com/deeppavlov/DeepPavlov/blob/master/deeppavlov/requirements/pytorch.txt) required by DeepPavlov models.
See [docs](https://docs.deeppavlov.ai/en/master/intro/quick_start.html#using-gpu) for details.

### Command line interface (CLI)

To get predictions from a model interactively through CLI, run

```bash
python -m deeppavlov interact <config_path> [-d] [-i]
```

* `-d` downloads required data - pretrained model files and embeddings (optional).
* `-i` installs model requirements (optional).

You can train it in the same simple way:

```bash
python -m deeppavlov train <config_path> [-d] [-i]
```

Dataset will be downloaded regardless of whether there was `-d` flag or not.

To train on your own data you need to modify dataset reader path in the
[train config doc](http://docs.deeppavlov.ai/en/master/intro/config_description.html#train-config).
The data format is specified in the corresponding model doc page. 

There are even more actions you can perform with configs:

```bash
python -m deeppavlov <action> <config_path> [-d] [-i]
```

* `<action>` can be
    * `install` to install model requirements (same as `-i`),
    * `download` to download model's data (same as `-d`),
    * `train` to train the model on the data specified in the config file,
    * `evaluate` to calculate metrics on the same dataset,
    * `interact` to interact via CLI,
    * `riseapi` to run a REST API server (see
    [doc](http://docs.deeppavlov.ai/en/master/integrations/rest_api.html)),
    * `predict` to get prediction for samples from *stdin* or from
      *<file_path>* if `-f <file_path>` is specified.
* `<config_path>` specifies path (or name) of model's config file
* `-d` downloads required data
* `-i` installs model requirements


### Python

To get predictions from a model interactively through Python, run

```python
from deeppavlov import build_model

model = build_model(<config_path>, install=True, download=True)

# get predictions for 'input_text1', 'input_text2'
model(['input_text1', 'input_text2'])
```
where
* `install=True` installs model requirements (optional),
* `download=True` downloads required data from web - pretrained model files and embeddings (optional),
* `<config_path>` is model name (e.g. `'ner_ontonotes_bert_mult'`), path to the chosen model's config file (e.g.
  `"deeppavlov/configs/ner/ner_ontonotes_bert_mult.json"`),  or `deeppavlov.configs` attribute (e.g.
  `deeppavlov.configs.ner.ner_ontonotes_bert_mult` without quotation marks).

You can train it in the same simple way:

```python
from deeppavlov import train_model 

model = train_model(<config_path>, install=True, download=True)
```

To train on your own data you need to modify dataset reader path in the
[train config doc](http://docs.deeppavlov.ai/en/master/intro/config_description.html#train-config).
The data format is specified in the corresponding model doc page. 

You can also calculate metrics on the dataset specified in your config file:

```python
from deeppavlov import evaluate_model 

model = evaluate_model(<config_path>, install=True, download=True)
```

DeepPavlov also [allows](https://docs.deeppavlov.ai/en/master/features/python.html) to build a model from components for
inference using Python.

## License

DeepPavlov is Apache 2.0 - licensed.


%prep
%autosetup -n deeppavlov-1.1.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-deeppavlov -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Wed Apr 12 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.1-1
- Package Spec generated