summaryrefslogtreecommitdiff
path: root/python-deskew.spec
blob: 91a2a43fcbb4cdf8c6785d69035b69fd1977dc5b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
%global _empty_manifest_terminate_build 0
Name:		python-deskew
Version:	1.4.3
Release:	1
Summary:	Skew detection and correction in images containing text
License:	MIT
URL:		https://github.com/sbrunner/deskew
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/0c/53/e6e83055477254cc23b928f155445deb582434d4477f22769c068e21228f/deskew-1.4.3.tar.gz
BuildArch:	noarch

Requires:	python3-matplotlib
Requires:	python3-numpy
Requires:	python3-opencv-python-headless
Requires:	python3-scikit-image

%description
# Deskew

Note: Skew is measured in degrees. Deskewing is a process whereby skew is removed by rotating an image by the same amount as its skew but in the opposite direction. This results in a horizontally and vertically aligned image where the text runs across the page rather than at an angle.

The return angle is between -45 and 45 degrees to don't arbitrary change the image orientation.

By using the library you can set the argument `angle_pm_90` to `True` to have an angle between -90 and 90 degrees.

## Skew detection and correction in images containing text

| Image with skew                                      | Image after deskew                                                 |
| ---------------------------------------------------- | ------------------------------------------------------------------ |
| ![Image with skew](doc/input.jpeg 'Image with skew') | ![Image after deskew](doc/sample_output.jpeg 'Image after deskew') |

## Cli usage

Get the skew angle:

```bash
deskew input.png
```

Deskew an image:

```bash
deskew --output output.png input.png
```

## Lib usage

With scikit-image:

```python
import numpy as np
from skimage import io
from skimage.color import rgb2gray
from skimage.transform import rotate

from deskew import determine_skew

image = io.imread('input.png')
grayscale = rgb2gray(image)
angle = determine_skew(grayscale)
rotated = rotate(image, angle, resize=True) * 255
io.imsave('output.png', rotated.astype(np.uint8))
```

With OpenCV:

```python
import math
from typing import Tuple, Union

import cv2
import numpy as np

from deskew import determine_skew


def rotate(
        image: np.ndarray, angle: float, background: Union[int, Tuple[int, int, int]]
) -> np.ndarray:
    old_width, old_height = image.shape[:2]
    angle_radian = math.radians(angle)
    width = abs(np.sin(angle_radian) * old_height) + abs(np.cos(angle_radian) * old_width)
    height = abs(np.sin(angle_radian) * old_width) + abs(np.cos(angle_radian) * old_height)

    image_center = tuple(np.array(image.shape[1::-1]) / 2)
    rot_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0)
    rot_mat[1, 2] += (width - old_width) / 2
    rot_mat[0, 2] += (height - old_height) / 2
    return cv2.warpAffine(image, rot_mat, (int(round(height)), int(round(width))), borderValue=background)

image = cv2.imread('input.png')
grayscale = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
angle = determine_skew(grayscale)
rotated = rotate(image, angle, (0, 0, 0))
cv2.imwrite('output.png', rotated)
```

## Debug images

If you get wrong skew angle you can generate debug images, that can help you to tune the skewing detection.

If you install deskew with `pip install deskew[debug_images]` you can get some debug images used for
the skew detection with the function `determine_skew_debug_images`.

To start the investigation you should first increase the `num_peaks` (default `20`) and use
the `determine_skew_debug_images` function.

Then you can try to tune the following arguments `num_peaks`, `angle_pm_90`, `min_angle`, `max_angle`,
`min_deviation` and eventually `sigma`.

Inspired by Alyn: https://github.com/kakul/Alyn

## Contributing

Install the pre-commit hooks:

```bash
pip install pre-commit
pre-commit install --allow-missing-config
```



%package -n python3-deskew
Summary:	Skew detection and correction in images containing text
Provides:	python-deskew
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-deskew
# Deskew

Note: Skew is measured in degrees. Deskewing is a process whereby skew is removed by rotating an image by the same amount as its skew but in the opposite direction. This results in a horizontally and vertically aligned image where the text runs across the page rather than at an angle.

The return angle is between -45 and 45 degrees to don't arbitrary change the image orientation.

By using the library you can set the argument `angle_pm_90` to `True` to have an angle between -90 and 90 degrees.

## Skew detection and correction in images containing text

| Image with skew                                      | Image after deskew                                                 |
| ---------------------------------------------------- | ------------------------------------------------------------------ |
| ![Image with skew](doc/input.jpeg 'Image with skew') | ![Image after deskew](doc/sample_output.jpeg 'Image after deskew') |

## Cli usage

Get the skew angle:

```bash
deskew input.png
```

Deskew an image:

```bash
deskew --output output.png input.png
```

## Lib usage

With scikit-image:

```python
import numpy as np
from skimage import io
from skimage.color import rgb2gray
from skimage.transform import rotate

from deskew import determine_skew

image = io.imread('input.png')
grayscale = rgb2gray(image)
angle = determine_skew(grayscale)
rotated = rotate(image, angle, resize=True) * 255
io.imsave('output.png', rotated.astype(np.uint8))
```

With OpenCV:

```python
import math
from typing import Tuple, Union

import cv2
import numpy as np

from deskew import determine_skew


def rotate(
        image: np.ndarray, angle: float, background: Union[int, Tuple[int, int, int]]
) -> np.ndarray:
    old_width, old_height = image.shape[:2]
    angle_radian = math.radians(angle)
    width = abs(np.sin(angle_radian) * old_height) + abs(np.cos(angle_radian) * old_width)
    height = abs(np.sin(angle_radian) * old_width) + abs(np.cos(angle_radian) * old_height)

    image_center = tuple(np.array(image.shape[1::-1]) / 2)
    rot_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0)
    rot_mat[1, 2] += (width - old_width) / 2
    rot_mat[0, 2] += (height - old_height) / 2
    return cv2.warpAffine(image, rot_mat, (int(round(height)), int(round(width))), borderValue=background)

image = cv2.imread('input.png')
grayscale = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
angle = determine_skew(grayscale)
rotated = rotate(image, angle, (0, 0, 0))
cv2.imwrite('output.png', rotated)
```

## Debug images

If you get wrong skew angle you can generate debug images, that can help you to tune the skewing detection.

If you install deskew with `pip install deskew[debug_images]` you can get some debug images used for
the skew detection with the function `determine_skew_debug_images`.

To start the investigation you should first increase the `num_peaks` (default `20`) and use
the `determine_skew_debug_images` function.

Then you can try to tune the following arguments `num_peaks`, `angle_pm_90`, `min_angle`, `max_angle`,
`min_deviation` and eventually `sigma`.

Inspired by Alyn: https://github.com/kakul/Alyn

## Contributing

Install the pre-commit hooks:

```bash
pip install pre-commit
pre-commit install --allow-missing-config
```



%package help
Summary:	Development documents and examples for deskew
Provides:	python3-deskew-doc
%description help
# Deskew

Note: Skew is measured in degrees. Deskewing is a process whereby skew is removed by rotating an image by the same amount as its skew but in the opposite direction. This results in a horizontally and vertically aligned image where the text runs across the page rather than at an angle.

The return angle is between -45 and 45 degrees to don't arbitrary change the image orientation.

By using the library you can set the argument `angle_pm_90` to `True` to have an angle between -90 and 90 degrees.

## Skew detection and correction in images containing text

| Image with skew                                      | Image after deskew                                                 |
| ---------------------------------------------------- | ------------------------------------------------------------------ |
| ![Image with skew](doc/input.jpeg 'Image with skew') | ![Image after deskew](doc/sample_output.jpeg 'Image after deskew') |

## Cli usage

Get the skew angle:

```bash
deskew input.png
```

Deskew an image:

```bash
deskew --output output.png input.png
```

## Lib usage

With scikit-image:

```python
import numpy as np
from skimage import io
from skimage.color import rgb2gray
from skimage.transform import rotate

from deskew import determine_skew

image = io.imread('input.png')
grayscale = rgb2gray(image)
angle = determine_skew(grayscale)
rotated = rotate(image, angle, resize=True) * 255
io.imsave('output.png', rotated.astype(np.uint8))
```

With OpenCV:

```python
import math
from typing import Tuple, Union

import cv2
import numpy as np

from deskew import determine_skew


def rotate(
        image: np.ndarray, angle: float, background: Union[int, Tuple[int, int, int]]
) -> np.ndarray:
    old_width, old_height = image.shape[:2]
    angle_radian = math.radians(angle)
    width = abs(np.sin(angle_radian) * old_height) + abs(np.cos(angle_radian) * old_width)
    height = abs(np.sin(angle_radian) * old_width) + abs(np.cos(angle_radian) * old_height)

    image_center = tuple(np.array(image.shape[1::-1]) / 2)
    rot_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0)
    rot_mat[1, 2] += (width - old_width) / 2
    rot_mat[0, 2] += (height - old_height) / 2
    return cv2.warpAffine(image, rot_mat, (int(round(height)), int(round(width))), borderValue=background)

image = cv2.imread('input.png')
grayscale = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
angle = determine_skew(grayscale)
rotated = rotate(image, angle, (0, 0, 0))
cv2.imwrite('output.png', rotated)
```

## Debug images

If you get wrong skew angle you can generate debug images, that can help you to tune the skewing detection.

If you install deskew with `pip install deskew[debug_images]` you can get some debug images used for
the skew detection with the function `determine_skew_debug_images`.

To start the investigation you should first increase the `num_peaks` (default `20`) and use
the `determine_skew_debug_images` function.

Then you can try to tune the following arguments `num_peaks`, `angle_pm_90`, `min_angle`, `max_angle`,
`min_deviation` and eventually `sigma`.

Inspired by Alyn: https://github.com/kakul/Alyn

## Contributing

Install the pre-commit hooks:

```bash
pip install pre-commit
pre-commit install --allow-missing-config
```



%prep
%autosetup -n deskew-1.4.3

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-deskew -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.4.3-1
- Package Spec generated