summaryrefslogtreecommitdiff
path: root/python-dfa-identify.spec
blob: db14c228715c2c6f4b8afc1e35647af2cc9f8eec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
%global _empty_manifest_terminate_build 0
Name:		python-dfa-identify
Version:	3.9.1
Release:	1
Summary:	Python library for identifying (learning) DFAs (automata) from labeled examples.
License:	MIT
URL:		https://github.com/mvcisback/dfa-identify
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/40/ec/355b1cfbe98e9cc560d60b5fd3835b232c0ad20f7e0046d8d39ad7012dd8/dfa_identify-3.9.1.tar.gz
BuildArch:	noarch

Requires:	python3-attrs
Requires:	python3-networkx
Requires:	python3-funcy
Requires:	python3-bidict
Requires:	python3-sat
Requires:	python3-dfa
Requires:	python3-more-itertools

%description
# dfa-identify
Python library for identifying (learning) minimal DFAs from labeled examples
by reduction to SAT.

[![Build Status](https://cloud.drone.io/api/badges/mvcisback/dfa-identify/status.svg)](https://cloud.drone.io/mvcisback/dfa-identify)
[![PyPI version](https://badge.fury.io/py/dfa-identify.svg)](https://badge.fury.io/py/dfa-identify)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)

**Table of Contents**

- [Installation](#installation)
- [Usage](#usage)
- [Encoding](#encoding)
- [Goals and related libraries](#goals-and-related-libraries)

# Installation

If you just need to use `dfa`, you can just run:

`$ pip install dfa`

For developers, note that this project uses the
[poetry](https://poetry.eustace.io/) python package/dependency
management tool. Please familarize yourself with it and then
run:

`$ poetry install`

# Usage

`dfa_identify` is centered around the `find_dfa` and `find_dfas` function. Both take in
sequences of accepting and rejecting "words", where are word is a
sequence of arbitrary python objects. 

1. `find_dfas` returns all minimally sized (no `DFA`s exist of size
smaller) consistent with the given labeled data.

2. `find_dfa` returns an arbitrary (first) minimally sized `DFA`.

The returned `DFA` object is from the [dfa](https://github.com/mvcisback/dfa) library.


```python
from dfa_identify import find_dfa


accepting = ['a', 'abaa', 'bb']
rejecting = ['abb', 'b']
    
my_dfa = find_dfa(accepting=accepting, rejecting=rejecting)

assert all(my_dfa.label(x) for x in accepting)
assert all(not my_dfa.label(x) for x in rejecting)
```

Because words are sequences of arbitrary python objects, the
identification problem, with `a` ↦ 0 and `b` ↦ 1, is given below:


```python
accepting = [[0], [0, 'z', 0, 0], ['z', 'z']]
rejecting = [[0, 'z', 'z'], ['z']]

my_dfa = find_dfa(accepting=accepting, rejecting=rejecting)
```

# Minimality

There are two forms of "minimality" supported by `dfa-identify`.

1. By default, dfa-identify returns DFAs that have the minimum
   number of states required to seperate the accepting and
   rejecting set.
2. If the `order_by_stutter` flag is set to `True`, then the
   `find_dfas` (lazily) orders the DFAs so that the number of
   self loops (stuttering transitions) appearing the DFAs decreases.
   `find_dfa` thus returns a DFA with the most number of self loops
   given the minimal number of states.

# Encoding

This library currently uses the encodings outlined in [Heule, Marijn JH, and Sicco Verwer. "Exact DFA identification using SAT solvers." International Colloquium on Grammatical Inference. Springer, Berlin, Heidelberg, 2010.](https://link.springer.com/chapter/10.1007/978-3-642-15488-1_7) and [Ulyantsev, Vladimir, Ilya Zakirzyanov, and Anatoly Shalyto. "Symmetry Breaking Predicates for SAT-based DFA Identification."](https://arxiv.org/abs/1602.05028).

The key difference is in the use of the symmetry breaking clauses. Two kinds are exposed.

1. clique (Heule 2010): Partially breaks symmetries by analyzing
   conflict graph.
2. bfs (Ulyantsev 2016): Breaks all symmetries so that each model corresponds to a unique DFA.

# Goals and related libraries

There are many other python libraries that 
perform DFA and other automata inference.

1. [DFA-Inductor-py](https://github.com/ctlab/DFA-Inductor-py) - State of the art passive inference via reduction to SAT (as of 2019).
2. [z3gi](https://gitlab.science.ru.nl/rick/z3gi): Uses SMT backed passive learning algorithm.
3. [lstar](https://pypi.org/project/lstar/): Active learning algorithm based L* derivative.

The primary goal of this library is to loosely track the state of the art in passive SAT based inference while providing a simple implementation and API.


%package -n python3-dfa-identify
Summary:	Python library for identifying (learning) DFAs (automata) from labeled examples.
Provides:	python-dfa-identify
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-dfa-identify
# dfa-identify
Python library for identifying (learning) minimal DFAs from labeled examples
by reduction to SAT.

[![Build Status](https://cloud.drone.io/api/badges/mvcisback/dfa-identify/status.svg)](https://cloud.drone.io/mvcisback/dfa-identify)
[![PyPI version](https://badge.fury.io/py/dfa-identify.svg)](https://badge.fury.io/py/dfa-identify)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)

**Table of Contents**

- [Installation](#installation)
- [Usage](#usage)
- [Encoding](#encoding)
- [Goals and related libraries](#goals-and-related-libraries)

# Installation

If you just need to use `dfa`, you can just run:

`$ pip install dfa`

For developers, note that this project uses the
[poetry](https://poetry.eustace.io/) python package/dependency
management tool. Please familarize yourself with it and then
run:

`$ poetry install`

# Usage

`dfa_identify` is centered around the `find_dfa` and `find_dfas` function. Both take in
sequences of accepting and rejecting "words", where are word is a
sequence of arbitrary python objects. 

1. `find_dfas` returns all minimally sized (no `DFA`s exist of size
smaller) consistent with the given labeled data.

2. `find_dfa` returns an arbitrary (first) minimally sized `DFA`.

The returned `DFA` object is from the [dfa](https://github.com/mvcisback/dfa) library.


```python
from dfa_identify import find_dfa


accepting = ['a', 'abaa', 'bb']
rejecting = ['abb', 'b']
    
my_dfa = find_dfa(accepting=accepting, rejecting=rejecting)

assert all(my_dfa.label(x) for x in accepting)
assert all(not my_dfa.label(x) for x in rejecting)
```

Because words are sequences of arbitrary python objects, the
identification problem, with `a` ↦ 0 and `b` ↦ 1, is given below:


```python
accepting = [[0], [0, 'z', 0, 0], ['z', 'z']]
rejecting = [[0, 'z', 'z'], ['z']]

my_dfa = find_dfa(accepting=accepting, rejecting=rejecting)
```

# Minimality

There are two forms of "minimality" supported by `dfa-identify`.

1. By default, dfa-identify returns DFAs that have the minimum
   number of states required to seperate the accepting and
   rejecting set.
2. If the `order_by_stutter` flag is set to `True`, then the
   `find_dfas` (lazily) orders the DFAs so that the number of
   self loops (stuttering transitions) appearing the DFAs decreases.
   `find_dfa` thus returns a DFA with the most number of self loops
   given the minimal number of states.

# Encoding

This library currently uses the encodings outlined in [Heule, Marijn JH, and Sicco Verwer. "Exact DFA identification using SAT solvers." International Colloquium on Grammatical Inference. Springer, Berlin, Heidelberg, 2010.](https://link.springer.com/chapter/10.1007/978-3-642-15488-1_7) and [Ulyantsev, Vladimir, Ilya Zakirzyanov, and Anatoly Shalyto. "Symmetry Breaking Predicates for SAT-based DFA Identification."](https://arxiv.org/abs/1602.05028).

The key difference is in the use of the symmetry breaking clauses. Two kinds are exposed.

1. clique (Heule 2010): Partially breaks symmetries by analyzing
   conflict graph.
2. bfs (Ulyantsev 2016): Breaks all symmetries so that each model corresponds to a unique DFA.

# Goals and related libraries

There are many other python libraries that 
perform DFA and other automata inference.

1. [DFA-Inductor-py](https://github.com/ctlab/DFA-Inductor-py) - State of the art passive inference via reduction to SAT (as of 2019).
2. [z3gi](https://gitlab.science.ru.nl/rick/z3gi): Uses SMT backed passive learning algorithm.
3. [lstar](https://pypi.org/project/lstar/): Active learning algorithm based L* derivative.

The primary goal of this library is to loosely track the state of the art in passive SAT based inference while providing a simple implementation and API.


%package help
Summary:	Development documents and examples for dfa-identify
Provides:	python3-dfa-identify-doc
%description help
# dfa-identify
Python library for identifying (learning) minimal DFAs from labeled examples
by reduction to SAT.

[![Build Status](https://cloud.drone.io/api/badges/mvcisback/dfa-identify/status.svg)](https://cloud.drone.io/mvcisback/dfa-identify)
[![PyPI version](https://badge.fury.io/py/dfa-identify.svg)](https://badge.fury.io/py/dfa-identify)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)

**Table of Contents**

- [Installation](#installation)
- [Usage](#usage)
- [Encoding](#encoding)
- [Goals and related libraries](#goals-and-related-libraries)

# Installation

If you just need to use `dfa`, you can just run:

`$ pip install dfa`

For developers, note that this project uses the
[poetry](https://poetry.eustace.io/) python package/dependency
management tool. Please familarize yourself with it and then
run:

`$ poetry install`

# Usage

`dfa_identify` is centered around the `find_dfa` and `find_dfas` function. Both take in
sequences of accepting and rejecting "words", where are word is a
sequence of arbitrary python objects. 

1. `find_dfas` returns all minimally sized (no `DFA`s exist of size
smaller) consistent with the given labeled data.

2. `find_dfa` returns an arbitrary (first) minimally sized `DFA`.

The returned `DFA` object is from the [dfa](https://github.com/mvcisback/dfa) library.


```python
from dfa_identify import find_dfa


accepting = ['a', 'abaa', 'bb']
rejecting = ['abb', 'b']
    
my_dfa = find_dfa(accepting=accepting, rejecting=rejecting)

assert all(my_dfa.label(x) for x in accepting)
assert all(not my_dfa.label(x) for x in rejecting)
```

Because words are sequences of arbitrary python objects, the
identification problem, with `a` ↦ 0 and `b` ↦ 1, is given below:


```python
accepting = [[0], [0, 'z', 0, 0], ['z', 'z']]
rejecting = [[0, 'z', 'z'], ['z']]

my_dfa = find_dfa(accepting=accepting, rejecting=rejecting)
```

# Minimality

There are two forms of "minimality" supported by `dfa-identify`.

1. By default, dfa-identify returns DFAs that have the minimum
   number of states required to seperate the accepting and
   rejecting set.
2. If the `order_by_stutter` flag is set to `True`, then the
   `find_dfas` (lazily) orders the DFAs so that the number of
   self loops (stuttering transitions) appearing the DFAs decreases.
   `find_dfa` thus returns a DFA with the most number of self loops
   given the minimal number of states.

# Encoding

This library currently uses the encodings outlined in [Heule, Marijn JH, and Sicco Verwer. "Exact DFA identification using SAT solvers." International Colloquium on Grammatical Inference. Springer, Berlin, Heidelberg, 2010.](https://link.springer.com/chapter/10.1007/978-3-642-15488-1_7) and [Ulyantsev, Vladimir, Ilya Zakirzyanov, and Anatoly Shalyto. "Symmetry Breaking Predicates for SAT-based DFA Identification."](https://arxiv.org/abs/1602.05028).

The key difference is in the use of the symmetry breaking clauses. Two kinds are exposed.

1. clique (Heule 2010): Partially breaks symmetries by analyzing
   conflict graph.
2. bfs (Ulyantsev 2016): Breaks all symmetries so that each model corresponds to a unique DFA.

# Goals and related libraries

There are many other python libraries that 
perform DFA and other automata inference.

1. [DFA-Inductor-py](https://github.com/ctlab/DFA-Inductor-py) - State of the art passive inference via reduction to SAT (as of 2019).
2. [z3gi](https://gitlab.science.ru.nl/rick/z3gi): Uses SMT backed passive learning algorithm.
3. [lstar](https://pypi.org/project/lstar/): Active learning algorithm based L* derivative.

The primary goal of this library is to loosely track the state of the art in passive SAT based inference while providing a simple implementation and API.


%prep
%autosetup -n dfa-identify-3.9.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-dfa-identify -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Mon May 15 2023 Python_Bot <Python_Bot@openeuler.org> - 3.9.1-1
- Package Spec generated