summaryrefslogtreecommitdiff
path: root/python-dff.spec
blob: e9975a5de4dc13ff8cd23a6a439ae4493bb985f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
%global _empty_manifest_terminate_build 0
Name:		python-dff
Version:	0.4.1
Release:	1
Summary:	The Dialog Flow Framework (DFF) allows you to write conversational services.
License:	Apache Software License
URL:		https://github.com/deeppavlov/dialog_flow_framework
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/67/fa/cea1867b0eee11054d44eaa2dd733061f92af82699c1934e04d8eaa3d731/dff-0.4.1.tar.gz
BuildArch:	noarch

Requires:	python3-pydantic
Requires:	python3-nest-asyncio
Requires:	python3-typing-extensions
Requires:	python3-pydantic
Requires:	python3-nest-asyncio
Requires:	python3-typing-extensions
Requires:	python3-bump2version
Requires:	python3-build
Requires:	python3-twine
Requires:	python3-pytelegrambotapi
Requires:	python3-motor
Requires:	python3-pydata-sphinx-theme
Requires:	python3-sphinx-favicon
Requires:	python3-cryptography
Requires:	python3-sqlalchemy[asyncio]
Requires:	python3-sqlalchemy[asyncio]
Requires:	python3-telethon
Requires:	python3-sphinxcontrib-katex
Requires:	python3-pytest
Requires:	python3-pytest-asyncio
Requires:	python3-mypy
Requires:	python3-pytest-cov
Requires:	python3-sphinxcontrib-httpdomain
Requires:	python3-uvicorn
Requires:	python3-ydb
Requires:	python3-idna
Requires:	python3-anyio
Requires:	python3-requests
Requires:	python3-websockets
Requires:	python3-build
Requires:	python3-typing-extensions
Requires:	python3-nest-asyncio
Requires:	python3-jupytext
Requires:	python3-h11
Requires:	python3-aiofiles
Requires:	python3-nbsphinx
Requires:	python3-flake8
Requires:	python3-pydantic
Requires:	python3-aiosqlite
Requires:	python3-black
Requires:	python3-sphinxcontrib-apidoc
Requires:	python3-starlette
Requires:	python3-jupyter
Requires:	python3-sphinx-gallery
Requires:	python3-sphinx-autodoc-typehints
Requires:	python3-six
Requires:	python3-flask[async]
Requires:	python3-sphinx
Requires:	python3-psutil
Requires:	python3-aioredis
Requires:	python3-sphinx-copybutton
Requires:	python3-asyncpg
Requires:	python3-isort
Requires:	python3-asyncmy
Requires:	python3-click
Requires:	python3-twine
Requires:	python3-fastapi
Requires:	python3-sniffio
Requires:	python3-bump2version
Requires:	python3-sphinxcontrib-apidoc
Requires:	python3-sphinx-copybutton
Requires:	python3-requests
Requires:	python3-sphinxcontrib-httpdomain
Requires:	python3-pydata-sphinx-theme
Requires:	python3-jupyter
Requires:	python3-sphinx-favicon
Requires:	python3-jupytext
Requires:	python3-sphinxcontrib-katex
Requires:	python3-nbsphinx
Requires:	python3-sphinx-gallery
Requires:	python3-sphinx-autodoc-typehints
Requires:	python3-sphinx
Requires:	python3-pytelegrambotapi
Requires:	python3-asyncpg
Requires:	python3-motor
Requires:	python3-asyncmy
Requires:	python3-typing-extensions
Requires:	python3-nest-asyncio
Requires:	python3-sqlalchemy[asyncio]
Requires:	python3-sqlalchemy[asyncio]
Requires:	python3-cryptography
Requires:	python3-aiofiles
Requires:	python3-six
Requires:	python3-pydantic
Requires:	python3-aiosqlite
Requires:	python3-aioredis
Requires:	python3-ydb
Requires:	python3-aiofiles
Requires:	python3-motor
Requires:	python3-cryptography
Requires:	python3-sqlalchemy[asyncio]
Requires:	python3-asyncmy
Requires:	python3-aiofiles
Requires:	python3-asyncpg
Requires:	python3-sqlalchemy[asyncio]
Requires:	python3-aioredis
Requires:	python3-aiosqlite
Requires:	python3-sqlalchemy[asyncio]
Requires:	python3-sqlalchemy[asyncio]
Requires:	python3-pytelegrambotapi
Requires:	python3-pytelegrambotapi
Requires:	python3-motor
Requires:	python3-sqlalchemy[asyncio]
Requires:	python3-sqlalchemy[asyncio]
Requires:	python3-cryptography
Requires:	python3-telethon
Requires:	python3-pytest
Requires:	python3-pytest-asyncio
Requires:	python3-pytest-cov
Requires:	python3-ydb
Requires:	python3-uvicorn
Requires:	python3-idna
Requires:	python3-anyio
Requires:	python3-requests
Requires:	python3-websockets
Requires:	python3-typing-extensions
Requires:	python3-nest-asyncio
Requires:	python3-h11
Requires:	python3-aiofiles
Requires:	python3-flake8
Requires:	python3-pydantic
Requires:	python3-aiosqlite
Requires:	python3-black
Requires:	python3-starlette
Requires:	python3-six
Requires:	python3-flask[async]
Requires:	python3-psutil
Requires:	python3-aioredis
Requires:	python3-asyncpg
Requires:	python3-isort
Requires:	python3-asyncmy
Requires:	python3-click
Requires:	python3-fastapi
Requires:	python3-sniffio
Requires:	python3-telethon
Requires:	python3-pytest
Requires:	python3-pytest-asyncio
Requires:	python3-pytest-cov
Requires:	python3-uvicorn
Requires:	python3-idna
Requires:	python3-anyio
Requires:	python3-requests
Requires:	python3-websockets
Requires:	python3-h11
Requires:	python3-flake8
Requires:	python3-black
Requires:	python3-starlette
Requires:	python3-flask[async]
Requires:	python3-psutil
Requires:	python3-isort
Requires:	python3-click
Requires:	python3-fastapi
Requires:	python3-sniffio
Requires:	python3-pytelegrambotapi
Requires:	python3-motor
Requires:	python3-sqlalchemy[asyncio]
Requires:	python3-sqlalchemy[asyncio]
Requires:	python3-cryptography
Requires:	python3-telethon
Requires:	python3-pytest
Requires:	python3-pytest-asyncio
Requires:	python3-pytest-cov
Requires:	python3-ydb
Requires:	python3-uvicorn
Requires:	python3-idna
Requires:	python3-anyio
Requires:	python3-requests
Requires:	python3-websockets
Requires:	python3-typing-extensions
Requires:	python3-nest-asyncio
Requires:	python3-h11
Requires:	python3-aiofiles
Requires:	python3-flake8
Requires:	python3-pydantic
Requires:	python3-aiosqlite
Requires:	python3-black
Requires:	python3-starlette
Requires:	python3-six
Requires:	python3-flask[async]
Requires:	python3-psutil
Requires:	python3-aioredis
Requires:	python3-asyncpg
Requires:	python3-isort
Requires:	python3-asyncmy
Requires:	python3-click
Requires:	python3-fastapi
Requires:	python3-sniffio
Requires:	python3-ydb
Requires:	python3-six

%description

# Dialog Flow Framework

The Dialog Flow Framework (DFF) allows you to write conversational services.
The service is written by defining a special dialog graph that describes the behavior of the dialog service.
The dialog graph contains the dialog script. DFF offers a specialized language (DSL) for quickly writing dialog graphs.
You can use it in services such as writing skills for Amazon Alexa, etc., chatbots for social networks, website call centers, etc.

[![Documentation Status](https://github.com/deeppavlov/dialog_flow_framework/workflows/build_and_publish_docs/badge.svg)](https://deeppavlov.github.io/dialog_flow_framework)
[![Codestyle](https://github.com/deeppavlov/dialog_flow_framework/workflows/codestyle/badge.svg)](https://github.com/deeppavlov/dialog_flow_framework/actions/workflows/codestyle.yml)
[![Tests](https://github.com/deeppavlov/dialog_flow_framework/workflows/test_coverage/badge.svg)](https://github.com/deeppavlov/dialog_flow_framework/actions/workflows/test_coverage.yml)
[![License Apache 2.0](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](https://github.com/deeppavlov/dialog_flow_framework/blob/master/LICENSE)
![Python 3.7, 3.8, 3.9](https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9-green.svg)
[![PyPI](https://img.shields.io/pypi/v/dff)](https://pypi.org/project/dff/)
[![Downloads](https://pepy.tech/badge/dff)](https://pepy.tech/project/dff)

# Quick Start
## Installation

DFF can be installed via pip:

```bash
pip install dff
```

The above command will set the minimum dependencies to start working with DFF.
The installation process allows the user to choose from different packages based on their dependencies, which are:
```bash
pip install dff[core]  # minimal dependencies (by default)
pip install dff[json]  # dependencies for using JSON
pip install dff[pickle] # dependencies for using Pickle
pip install dff[redis]  # dependencies for using Redis
pip install dff[mongodb]  # dependencies for using MongoDB
pip install dff[mysql]  # dependencies for using MySQL
pip install dff[postgresql]  # dependencies for using PostgreSQL
pip install dff[sqlite]  # dependencies for using SQLite
pip install dff[ydb]  # dependencies for using Yandex Database
pip install dff[telegram]  # dependencies for using Telegram
pip install dff[full]  # full dependencies including all options above
pip install dff[tests]  # dependencies for running tests
pip install dff[test_full]  # full dependencies for running all tests (all options above)
pip install dff[tutorials]  # dependencies for running tutorials (all options above)
pip install dff[devel]  # dependencies for development
pip install dff[doc]  # dependencies for documentation
pip install dff[devel_full]  # full dependencies for development (all options above)
```

For example, if you are going to use one of the database backends,
you can specify the corresponding requirements yourself. Multiple dependencies can be installed at once, e.g.
```bash
pip install dff[postgresql, mysql]
```

## Basic example

```python
from dff.script import GLOBAL, TRANSITIONS, RESPONSE, Context, Message
from dff.pipeline import Pipeline
import dff.script.conditions.std_conditions as cnd
from typing import Tuple

# create a dialog script
script = {
GLOBAL: {
TRANSITIONS: {
("flow", "node_hi"): cnd.exact_match(Message(text="Hi")),
("flow", "node_ok"): cnd.true()
}
},
"flow": {
"node_hi": {RESPONSE: Message(text="Hi!!!")},
"node_ok": {RESPONSE: Message(text="Okey")},
},
}

# init pipeline
pipeline = Pipeline.from_script(script, start_label=("flow", "node_hi"))


# handler requests
def turn_handler(in_request: Message, pipeline: Pipeline) -> Tuple[Message, Context]:
# Pass the next request of user into pipeline and it returns updated context with actor response
ctx = pipeline(in_request, 0)
# Get last actor response from the context
out_response = ctx.last_response
# The next condition branching needs for testing
return out_response, ctx


while True:
in_request = input("type your answer: ")
out_response, ctx = turn_handler(Message(text=in_request), pipeline)
print(out_response.text)
```

When you run this code, you get similar output:
```
type your answer: hi
Okey
type your answer: Hi
Hi!!!
type your answer: ok
Okey
type your answer: ok
Okey
```

To get more advanced examples, take a look at
[tutorials](https://github.com/deeppavlov/dialog_flow_framework/tree/dev/tutorials) on GitHub.

# Context Storages
## Description

Context Storages allow you to save and retrieve user dialogue states
(in the form of a `Context` object) using various database backends.

The following backends are currently supported:
* [JSON](https://www.json.org/json-en.html)
* [pickle](https://docs.python.org/3/library/pickle.html)
* [shelve](https://docs.python.org/3/library/shelve.html)
* [SQLite](https://www.sqlite.org/index.html)
* [PostgreSQL](https://www.postgresql.org/)
* [MySQL](https://www.mysql.com/)
* [MongoDB](https://www.mongodb.com/)
* [Redis](https://redis.io/)
* [Yandex DataBase](https://ydb.tech/)

Aside from this, we offer some interfaces for saving data to your local file system.
These are not meant to be used in production, but can be helpful for prototyping your application.

## Basic example

```python
from dff.script import Context
from dff.pipeline import Pipeline
from dff.context_storages import SQLContextStorage
from .script import some_df_script

db = SQLContextStorage("postgresql+asyncpg://user:password@host:port/dbname")

pipeline = Pipeline.from_script(some_df_script, start_label=("root", "start"), fallback_label=("root", "fallback"))


def handle_request(request):
user_id = request.args["user_id"]
new_context = pipeline(request, user_id)
return new_context.last_response

```

To get more advanced examples, take a look at
[tutorials](https://github.com/deeppavlov/dialog_flow_framework/tree/dev/tutorials/context_storages) on GitHub.

# Contributing to the Dialog Flow Framework

Please refer to [CONTRIBUTING.md](https://github.com/deeppavlov/dialog_flow_framework/blob/dev/CONTRIBUTING.md).


%package -n python3-dff
Summary:	The Dialog Flow Framework (DFF) allows you to write conversational services.
Provides:	python-dff
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-dff

# Dialog Flow Framework

The Dialog Flow Framework (DFF) allows you to write conversational services.
The service is written by defining a special dialog graph that describes the behavior of the dialog service.
The dialog graph contains the dialog script. DFF offers a specialized language (DSL) for quickly writing dialog graphs.
You can use it in services such as writing skills for Amazon Alexa, etc., chatbots for social networks, website call centers, etc.

[![Documentation Status](https://github.com/deeppavlov/dialog_flow_framework/workflows/build_and_publish_docs/badge.svg)](https://deeppavlov.github.io/dialog_flow_framework)
[![Codestyle](https://github.com/deeppavlov/dialog_flow_framework/workflows/codestyle/badge.svg)](https://github.com/deeppavlov/dialog_flow_framework/actions/workflows/codestyle.yml)
[![Tests](https://github.com/deeppavlov/dialog_flow_framework/workflows/test_coverage/badge.svg)](https://github.com/deeppavlov/dialog_flow_framework/actions/workflows/test_coverage.yml)
[![License Apache 2.0](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](https://github.com/deeppavlov/dialog_flow_framework/blob/master/LICENSE)
![Python 3.7, 3.8, 3.9](https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9-green.svg)
[![PyPI](https://img.shields.io/pypi/v/dff)](https://pypi.org/project/dff/)
[![Downloads](https://pepy.tech/badge/dff)](https://pepy.tech/project/dff)

# Quick Start
## Installation

DFF can be installed via pip:

```bash
pip install dff
```

The above command will set the minimum dependencies to start working with DFF.
The installation process allows the user to choose from different packages based on their dependencies, which are:
```bash
pip install dff[core]  # minimal dependencies (by default)
pip install dff[json]  # dependencies for using JSON
pip install dff[pickle] # dependencies for using Pickle
pip install dff[redis]  # dependencies for using Redis
pip install dff[mongodb]  # dependencies for using MongoDB
pip install dff[mysql]  # dependencies for using MySQL
pip install dff[postgresql]  # dependencies for using PostgreSQL
pip install dff[sqlite]  # dependencies for using SQLite
pip install dff[ydb]  # dependencies for using Yandex Database
pip install dff[telegram]  # dependencies for using Telegram
pip install dff[full]  # full dependencies including all options above
pip install dff[tests]  # dependencies for running tests
pip install dff[test_full]  # full dependencies for running all tests (all options above)
pip install dff[tutorials]  # dependencies for running tutorials (all options above)
pip install dff[devel]  # dependencies for development
pip install dff[doc]  # dependencies for documentation
pip install dff[devel_full]  # full dependencies for development (all options above)
```

For example, if you are going to use one of the database backends,
you can specify the corresponding requirements yourself. Multiple dependencies can be installed at once, e.g.
```bash
pip install dff[postgresql, mysql]
```

## Basic example

```python
from dff.script import GLOBAL, TRANSITIONS, RESPONSE, Context, Message
from dff.pipeline import Pipeline
import dff.script.conditions.std_conditions as cnd
from typing import Tuple

# create a dialog script
script = {
GLOBAL: {
TRANSITIONS: {
("flow", "node_hi"): cnd.exact_match(Message(text="Hi")),
("flow", "node_ok"): cnd.true()
}
},
"flow": {
"node_hi": {RESPONSE: Message(text="Hi!!!")},
"node_ok": {RESPONSE: Message(text="Okey")},
},
}

# init pipeline
pipeline = Pipeline.from_script(script, start_label=("flow", "node_hi"))


# handler requests
def turn_handler(in_request: Message, pipeline: Pipeline) -> Tuple[Message, Context]:
# Pass the next request of user into pipeline and it returns updated context with actor response
ctx = pipeline(in_request, 0)
# Get last actor response from the context
out_response = ctx.last_response
# The next condition branching needs for testing
return out_response, ctx


while True:
in_request = input("type your answer: ")
out_response, ctx = turn_handler(Message(text=in_request), pipeline)
print(out_response.text)
```

When you run this code, you get similar output:
```
type your answer: hi
Okey
type your answer: Hi
Hi!!!
type your answer: ok
Okey
type your answer: ok
Okey
```

To get more advanced examples, take a look at
[tutorials](https://github.com/deeppavlov/dialog_flow_framework/tree/dev/tutorials) on GitHub.

# Context Storages
## Description

Context Storages allow you to save and retrieve user dialogue states
(in the form of a `Context` object) using various database backends.

The following backends are currently supported:
* [JSON](https://www.json.org/json-en.html)
* [pickle](https://docs.python.org/3/library/pickle.html)
* [shelve](https://docs.python.org/3/library/shelve.html)
* [SQLite](https://www.sqlite.org/index.html)
* [PostgreSQL](https://www.postgresql.org/)
* [MySQL](https://www.mysql.com/)
* [MongoDB](https://www.mongodb.com/)
* [Redis](https://redis.io/)
* [Yandex DataBase](https://ydb.tech/)

Aside from this, we offer some interfaces for saving data to your local file system.
These are not meant to be used in production, but can be helpful for prototyping your application.

## Basic example

```python
from dff.script import Context
from dff.pipeline import Pipeline
from dff.context_storages import SQLContextStorage
from .script import some_df_script

db = SQLContextStorage("postgresql+asyncpg://user:password@host:port/dbname")

pipeline = Pipeline.from_script(some_df_script, start_label=("root", "start"), fallback_label=("root", "fallback"))


def handle_request(request):
user_id = request.args["user_id"]
new_context = pipeline(request, user_id)
return new_context.last_response

```

To get more advanced examples, take a look at
[tutorials](https://github.com/deeppavlov/dialog_flow_framework/tree/dev/tutorials/context_storages) on GitHub.

# Contributing to the Dialog Flow Framework

Please refer to [CONTRIBUTING.md](https://github.com/deeppavlov/dialog_flow_framework/blob/dev/CONTRIBUTING.md).


%package help
Summary:	Development documents and examples for dff
Provides:	python3-dff-doc
%description help

# Dialog Flow Framework

The Dialog Flow Framework (DFF) allows you to write conversational services.
The service is written by defining a special dialog graph that describes the behavior of the dialog service.
The dialog graph contains the dialog script. DFF offers a specialized language (DSL) for quickly writing dialog graphs.
You can use it in services such as writing skills for Amazon Alexa, etc., chatbots for social networks, website call centers, etc.

[![Documentation Status](https://github.com/deeppavlov/dialog_flow_framework/workflows/build_and_publish_docs/badge.svg)](https://deeppavlov.github.io/dialog_flow_framework)
[![Codestyle](https://github.com/deeppavlov/dialog_flow_framework/workflows/codestyle/badge.svg)](https://github.com/deeppavlov/dialog_flow_framework/actions/workflows/codestyle.yml)
[![Tests](https://github.com/deeppavlov/dialog_flow_framework/workflows/test_coverage/badge.svg)](https://github.com/deeppavlov/dialog_flow_framework/actions/workflows/test_coverage.yml)
[![License Apache 2.0](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](https://github.com/deeppavlov/dialog_flow_framework/blob/master/LICENSE)
![Python 3.7, 3.8, 3.9](https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9-green.svg)
[![PyPI](https://img.shields.io/pypi/v/dff)](https://pypi.org/project/dff/)
[![Downloads](https://pepy.tech/badge/dff)](https://pepy.tech/project/dff)

# Quick Start
## Installation

DFF can be installed via pip:

```bash
pip install dff
```

The above command will set the minimum dependencies to start working with DFF.
The installation process allows the user to choose from different packages based on their dependencies, which are:
```bash
pip install dff[core]  # minimal dependencies (by default)
pip install dff[json]  # dependencies for using JSON
pip install dff[pickle] # dependencies for using Pickle
pip install dff[redis]  # dependencies for using Redis
pip install dff[mongodb]  # dependencies for using MongoDB
pip install dff[mysql]  # dependencies for using MySQL
pip install dff[postgresql]  # dependencies for using PostgreSQL
pip install dff[sqlite]  # dependencies for using SQLite
pip install dff[ydb]  # dependencies for using Yandex Database
pip install dff[telegram]  # dependencies for using Telegram
pip install dff[full]  # full dependencies including all options above
pip install dff[tests]  # dependencies for running tests
pip install dff[test_full]  # full dependencies for running all tests (all options above)
pip install dff[tutorials]  # dependencies for running tutorials (all options above)
pip install dff[devel]  # dependencies for development
pip install dff[doc]  # dependencies for documentation
pip install dff[devel_full]  # full dependencies for development (all options above)
```

For example, if you are going to use one of the database backends,
you can specify the corresponding requirements yourself. Multiple dependencies can be installed at once, e.g.
```bash
pip install dff[postgresql, mysql]
```

## Basic example

```python
from dff.script import GLOBAL, TRANSITIONS, RESPONSE, Context, Message
from dff.pipeline import Pipeline
import dff.script.conditions.std_conditions as cnd
from typing import Tuple

# create a dialog script
script = {
GLOBAL: {
TRANSITIONS: {
("flow", "node_hi"): cnd.exact_match(Message(text="Hi")),
("flow", "node_ok"): cnd.true()
}
},
"flow": {
"node_hi": {RESPONSE: Message(text="Hi!!!")},
"node_ok": {RESPONSE: Message(text="Okey")},
},
}

# init pipeline
pipeline = Pipeline.from_script(script, start_label=("flow", "node_hi"))


# handler requests
def turn_handler(in_request: Message, pipeline: Pipeline) -> Tuple[Message, Context]:
# Pass the next request of user into pipeline and it returns updated context with actor response
ctx = pipeline(in_request, 0)
# Get last actor response from the context
out_response = ctx.last_response
# The next condition branching needs for testing
return out_response, ctx


while True:
in_request = input("type your answer: ")
out_response, ctx = turn_handler(Message(text=in_request), pipeline)
print(out_response.text)
```

When you run this code, you get similar output:
```
type your answer: hi
Okey
type your answer: Hi
Hi!!!
type your answer: ok
Okey
type your answer: ok
Okey
```

To get more advanced examples, take a look at
[tutorials](https://github.com/deeppavlov/dialog_flow_framework/tree/dev/tutorials) on GitHub.

# Context Storages
## Description

Context Storages allow you to save and retrieve user dialogue states
(in the form of a `Context` object) using various database backends.

The following backends are currently supported:
* [JSON](https://www.json.org/json-en.html)
* [pickle](https://docs.python.org/3/library/pickle.html)
* [shelve](https://docs.python.org/3/library/shelve.html)
* [SQLite](https://www.sqlite.org/index.html)
* [PostgreSQL](https://www.postgresql.org/)
* [MySQL](https://www.mysql.com/)
* [MongoDB](https://www.mongodb.com/)
* [Redis](https://redis.io/)
* [Yandex DataBase](https://ydb.tech/)

Aside from this, we offer some interfaces for saving data to your local file system.
These are not meant to be used in production, but can be helpful for prototyping your application.

## Basic example

```python
from dff.script import Context
from dff.pipeline import Pipeline
from dff.context_storages import SQLContextStorage
from .script import some_df_script

db = SQLContextStorage("postgresql+asyncpg://user:password@host:port/dbname")

pipeline = Pipeline.from_script(some_df_script, start_label=("root", "start"), fallback_label=("root", "fallback"))


def handle_request(request):
user_id = request.args["user_id"]
new_context = pipeline(request, user_id)
return new_context.last_response

```

To get more advanced examples, take a look at
[tutorials](https://github.com/deeppavlov/dialog_flow_framework/tree/dev/tutorials/context_storages) on GitHub.

# Contributing to the Dialog Flow Framework

Please refer to [CONTRIBUTING.md](https://github.com/deeppavlov/dialog_flow_framework/blob/dev/CONTRIBUTING.md).


%prep
%autosetup -n dff-0.4.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-dff -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.1-1
- Package Spec generated