summaryrefslogtreecommitdiff
path: root/python-dicomrttool.spec
blob: df095bcc40d9b1efb14babd57419cfe16c976180 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
%global _empty_manifest_terminate_build 0
Name:		python-DicomRTTool
Version:	2.0.8
Release:	1
Summary:	Services for reading dicom files, RT structures, and dose files, as well as tools for converting numpy prediction masks back to an RT structure
License:	GNU Affero General Public License v3
URL:		https://github.com/brianmanderson/Dicom_RT_and_Images_to_Mask
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/fd/68/778eac11a2991c66bb6e23ff80cf5b91717b125d0d282c016b868640d7cb/DicomRTTool-2.0.8.tar.gz
BuildArch:	noarch

Requires:	python3-numpy
Requires:	python3-matplotlib
Requires:	python3-opencv-python
Requires:	python3-openpyxl
Requires:	python3-pandas
Requires:	python3-Pillow
Requires:	python3-pydicom
Requires:	python3-scikit-image
Requires:	python3-scipy
Requires:	python3-SimpleITK
Requires:	python3-six
Requires:	python3-xlrd
Requires:	python3-check-manifest
Requires:	python3-tqdm
Requires:	python3-pytest
Requires:	python3-PlotScrollNumpyArrays
Requires:	python3-setuptools

%description
# We're published! Please check out the Technical Note here: https://www.sciencedirect.com/science/article/abs/pii/S1879850021000485 and reference this work if you find it useful
### DOI:https://doi.org/10.1016/j.prro.2021.02.003

## This code provides functionality for turning dicom images and RT structures into nifti files as well as turning prediction masks back into RT structures
## Installation guide
    pip install DicomRTTool
### Highly recommend to go through the jupyter notebook in the Examples folder and to read the Wiki

### Quick use guide
    from DicomRTTool.ReaderWriter import DicomReaderWriter, ROIAssociationClass
    Dicom_path = r'.some_path_to_dicom'
    Dicom_reader = DicomReaderWriter(description='Examples', arg_max=True)
    Dicom_reader.walk_through_folders(Dicom_path) # This will parse through all DICOM present in the folder and subfolders
    all_rois = Dicom_reader.return_rois(print_rois=True) # Return a list of all rois present
    
    Contour_names = ['tumor'] # Define what rois you want
    associations = [ROIAssociationClass('tumor', ['tumor_mr', 'tumor_ct'])] # Any list of roi associations
    Dicom_reader.set_contour_names_and_assocations(contour_names=Contour_names, associations=associations)
    
    Dicom_reader.get_images_and_mask()
    
    image_numpy = Dicom_reader.ArrayDicom
    mask_numpy = Dicom_reader.mask
    image_sitk_handle = Dicom_reader.dicom_handle
    mask_sitk_handle = Dicom_reader.annotation_handle

### Other interesting additions
### Adding information to the Dicom_reader.series_instances_dictionary
    from DicomRTTool.ReaderWriter import Tag
    plan_pydicom_string_keys = {"MyNamedRTPlan": Tag((0x300a, 0x002))}
    image_sitk_string_keys = {"MyPatientName": "0010|0010"}
    Dicom_reader = DicomReaderWriter(description='Examples', arg_max=True, plan_pydicom_string_keys=plan_pydicom_string_keys, image_sitk_string_keys=image_sitk_string_keys)
    

##### If you find this code useful, please provide a reference to my github page for others www.github.com/brianmanderson , thank you!

###### Ring update allows for multiple rings to be represented correctly

![multiple_rings.png](./Images/multiple_rings.png)


#### Works on oblique images for masks and predictions*




%package -n python3-DicomRTTool
Summary:	Services for reading dicom files, RT structures, and dose files, as well as tools for converting numpy prediction masks back to an RT structure
Provides:	python-DicomRTTool
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-DicomRTTool
# We're published! Please check out the Technical Note here: https://www.sciencedirect.com/science/article/abs/pii/S1879850021000485 and reference this work if you find it useful
### DOI:https://doi.org/10.1016/j.prro.2021.02.003

## This code provides functionality for turning dicom images and RT structures into nifti files as well as turning prediction masks back into RT structures
## Installation guide
    pip install DicomRTTool
### Highly recommend to go through the jupyter notebook in the Examples folder and to read the Wiki

### Quick use guide
    from DicomRTTool.ReaderWriter import DicomReaderWriter, ROIAssociationClass
    Dicom_path = r'.some_path_to_dicom'
    Dicom_reader = DicomReaderWriter(description='Examples', arg_max=True)
    Dicom_reader.walk_through_folders(Dicom_path) # This will parse through all DICOM present in the folder and subfolders
    all_rois = Dicom_reader.return_rois(print_rois=True) # Return a list of all rois present
    
    Contour_names = ['tumor'] # Define what rois you want
    associations = [ROIAssociationClass('tumor', ['tumor_mr', 'tumor_ct'])] # Any list of roi associations
    Dicom_reader.set_contour_names_and_assocations(contour_names=Contour_names, associations=associations)
    
    Dicom_reader.get_images_and_mask()
    
    image_numpy = Dicom_reader.ArrayDicom
    mask_numpy = Dicom_reader.mask
    image_sitk_handle = Dicom_reader.dicom_handle
    mask_sitk_handle = Dicom_reader.annotation_handle

### Other interesting additions
### Adding information to the Dicom_reader.series_instances_dictionary
    from DicomRTTool.ReaderWriter import Tag
    plan_pydicom_string_keys = {"MyNamedRTPlan": Tag((0x300a, 0x002))}
    image_sitk_string_keys = {"MyPatientName": "0010|0010"}
    Dicom_reader = DicomReaderWriter(description='Examples', arg_max=True, plan_pydicom_string_keys=plan_pydicom_string_keys, image_sitk_string_keys=image_sitk_string_keys)
    

##### If you find this code useful, please provide a reference to my github page for others www.github.com/brianmanderson , thank you!

###### Ring update allows for multiple rings to be represented correctly

![multiple_rings.png](./Images/multiple_rings.png)


#### Works on oblique images for masks and predictions*




%package help
Summary:	Development documents and examples for DicomRTTool
Provides:	python3-DicomRTTool-doc
%description help
# We're published! Please check out the Technical Note here: https://www.sciencedirect.com/science/article/abs/pii/S1879850021000485 and reference this work if you find it useful
### DOI:https://doi.org/10.1016/j.prro.2021.02.003

## This code provides functionality for turning dicom images and RT structures into nifti files as well as turning prediction masks back into RT structures
## Installation guide
    pip install DicomRTTool
### Highly recommend to go through the jupyter notebook in the Examples folder and to read the Wiki

### Quick use guide
    from DicomRTTool.ReaderWriter import DicomReaderWriter, ROIAssociationClass
    Dicom_path = r'.some_path_to_dicom'
    Dicom_reader = DicomReaderWriter(description='Examples', arg_max=True)
    Dicom_reader.walk_through_folders(Dicom_path) # This will parse through all DICOM present in the folder and subfolders
    all_rois = Dicom_reader.return_rois(print_rois=True) # Return a list of all rois present
    
    Contour_names = ['tumor'] # Define what rois you want
    associations = [ROIAssociationClass('tumor', ['tumor_mr', 'tumor_ct'])] # Any list of roi associations
    Dicom_reader.set_contour_names_and_assocations(contour_names=Contour_names, associations=associations)
    
    Dicom_reader.get_images_and_mask()
    
    image_numpy = Dicom_reader.ArrayDicom
    mask_numpy = Dicom_reader.mask
    image_sitk_handle = Dicom_reader.dicom_handle
    mask_sitk_handle = Dicom_reader.annotation_handle

### Other interesting additions
### Adding information to the Dicom_reader.series_instances_dictionary
    from DicomRTTool.ReaderWriter import Tag
    plan_pydicom_string_keys = {"MyNamedRTPlan": Tag((0x300a, 0x002))}
    image_sitk_string_keys = {"MyPatientName": "0010|0010"}
    Dicom_reader = DicomReaderWriter(description='Examples', arg_max=True, plan_pydicom_string_keys=plan_pydicom_string_keys, image_sitk_string_keys=image_sitk_string_keys)
    

##### If you find this code useful, please provide a reference to my github page for others www.github.com/brianmanderson , thank you!

###### Ring update allows for multiple rings to be represented correctly

![multiple_rings.png](./Images/multiple_rings.png)


#### Works on oblique images for masks and predictions*




%prep
%autosetup -n DicomRTTool-2.0.8

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-DicomRTTool -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 2.0.8-1
- Package Spec generated