1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
|
%global _empty_manifest_terminate_build 0
Name: python-dirichletcal
Version: 0.3.dev4
Release: 1
Summary: Python code for Dirichlet calibration
License: MIT License
URL: https://github.com/dirichletcal/dirichlet_python
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/fe/11/8d51ecdb233cbdfbe2d66454fa35da8b66f83ba2b5ef928e40c6893b0625/dirichletcal-0.3.dev4.tar.gz
BuildArch: noarch
%description
[![CI][ci:b]][ci]
[![License BSD3][license:b]][license]
![Python3.8][python:b]
[![pypi][pypi:b]][pypi]
[![codecov][codecov:b]][codecov]
[ci]: https://github.com/dirichletcal/dirichlet_python/actions/workflows/ci.yml
[ci:b]: https://github.com/dirichletcal/dirichlet_python/workflows/CI/badge.svg
[license]: https://github.com/dirichletcal/dirichlet_python/blob/master/LICENSE.txt
[license:b]: https://img.shields.io/github/license/dirichletcal/dirichlet_python.svg
[python:b]: https://img.shields.io/badge/python-3.8-blue
[pypi]: https://badge.fury.io/py/dirichletcal
[pypi:b]: https://badge.fury.io/py/dirichletcal.svg
[codecov]: https://codecov.io/gh/dirichletcal/dirichlet_python
[codecov:b]: https://codecov.io/gh/dirichletcal/dirichlet_python/branch/master/graph/badge.svg
# Dirichlet Calibration Python implementation
This is a Python implementation of the Dirichlet Calibration presented in
__Beyond temperature scaling: Obtaining well-calibrated multi-class probabilities
with Dirichlet calibration__ at NeurIPS 2019.
# Installation
```
# Clone the repository
git clone git@github.com:dirichletcal/dirichlet_python.git
# Go into the folder
cd dirichlet_python
# Create a new virtual environment with Python3
python3.8 -m venv venv
# Load the generated virtual environment
source venv/bin/activate
# Upgrade pip
pip install --upgrade pip
# Install all the dependencies
pip install -r requirements.txt
pip install --upgrade jaxlib
```
# Unittest
```
python -m unittest discover dirichletcal
```
# Cite
If you use this code in a publication please cite the following paper
```
@inproceedings{kull2019dircal,
title={Beyond temperature scaling: Obtaining well-calibrated multi-class probabilities with Dirichlet calibration},
author={Kull, Meelis and Nieto, Miquel Perello and K{\"a}ngsepp, Markus and Silva Filho, Telmo and Song, Hao and Flach, Peter},
booktitle={Advances in Neural Information Processing Systems},
pages={12295--12305},
year={2019}
}
```
# Examples
You can find some examples on how to use this package in the folder
[examples](examples)
# Pypi
To push a new version to Pypi first build the package
```
python3.8 setup.py sdist
```
And then upload to Pypi with twine
```
twine upload dist/*
```
It may require user and password if these are not set in your home directory a
file __.pypirc__
```
[pypi]
username = __token__
password = pypi-yourtoken
```
%package -n python3-dirichletcal
Summary: Python code for Dirichlet calibration
Provides: python-dirichletcal
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-dirichletcal
[![CI][ci:b]][ci]
[![License BSD3][license:b]][license]
![Python3.8][python:b]
[![pypi][pypi:b]][pypi]
[![codecov][codecov:b]][codecov]
[ci]: https://github.com/dirichletcal/dirichlet_python/actions/workflows/ci.yml
[ci:b]: https://github.com/dirichletcal/dirichlet_python/workflows/CI/badge.svg
[license]: https://github.com/dirichletcal/dirichlet_python/blob/master/LICENSE.txt
[license:b]: https://img.shields.io/github/license/dirichletcal/dirichlet_python.svg
[python:b]: https://img.shields.io/badge/python-3.8-blue
[pypi]: https://badge.fury.io/py/dirichletcal
[pypi:b]: https://badge.fury.io/py/dirichletcal.svg
[codecov]: https://codecov.io/gh/dirichletcal/dirichlet_python
[codecov:b]: https://codecov.io/gh/dirichletcal/dirichlet_python/branch/master/graph/badge.svg
# Dirichlet Calibration Python implementation
This is a Python implementation of the Dirichlet Calibration presented in
__Beyond temperature scaling: Obtaining well-calibrated multi-class probabilities
with Dirichlet calibration__ at NeurIPS 2019.
# Installation
```
# Clone the repository
git clone git@github.com:dirichletcal/dirichlet_python.git
# Go into the folder
cd dirichlet_python
# Create a new virtual environment with Python3
python3.8 -m venv venv
# Load the generated virtual environment
source venv/bin/activate
# Upgrade pip
pip install --upgrade pip
# Install all the dependencies
pip install -r requirements.txt
pip install --upgrade jaxlib
```
# Unittest
```
python -m unittest discover dirichletcal
```
# Cite
If you use this code in a publication please cite the following paper
```
@inproceedings{kull2019dircal,
title={Beyond temperature scaling: Obtaining well-calibrated multi-class probabilities with Dirichlet calibration},
author={Kull, Meelis and Nieto, Miquel Perello and K{\"a}ngsepp, Markus and Silva Filho, Telmo and Song, Hao and Flach, Peter},
booktitle={Advances in Neural Information Processing Systems},
pages={12295--12305},
year={2019}
}
```
# Examples
You can find some examples on how to use this package in the folder
[examples](examples)
# Pypi
To push a new version to Pypi first build the package
```
python3.8 setup.py sdist
```
And then upload to Pypi with twine
```
twine upload dist/*
```
It may require user and password if these are not set in your home directory a
file __.pypirc__
```
[pypi]
username = __token__
password = pypi-yourtoken
```
%package help
Summary: Development documents and examples for dirichletcal
Provides: python3-dirichletcal-doc
%description help
[![CI][ci:b]][ci]
[![License BSD3][license:b]][license]
![Python3.8][python:b]
[![pypi][pypi:b]][pypi]
[![codecov][codecov:b]][codecov]
[ci]: https://github.com/dirichletcal/dirichlet_python/actions/workflows/ci.yml
[ci:b]: https://github.com/dirichletcal/dirichlet_python/workflows/CI/badge.svg
[license]: https://github.com/dirichletcal/dirichlet_python/blob/master/LICENSE.txt
[license:b]: https://img.shields.io/github/license/dirichletcal/dirichlet_python.svg
[python:b]: https://img.shields.io/badge/python-3.8-blue
[pypi]: https://badge.fury.io/py/dirichletcal
[pypi:b]: https://badge.fury.io/py/dirichletcal.svg
[codecov]: https://codecov.io/gh/dirichletcal/dirichlet_python
[codecov:b]: https://codecov.io/gh/dirichletcal/dirichlet_python/branch/master/graph/badge.svg
# Dirichlet Calibration Python implementation
This is a Python implementation of the Dirichlet Calibration presented in
__Beyond temperature scaling: Obtaining well-calibrated multi-class probabilities
with Dirichlet calibration__ at NeurIPS 2019.
# Installation
```
# Clone the repository
git clone git@github.com:dirichletcal/dirichlet_python.git
# Go into the folder
cd dirichlet_python
# Create a new virtual environment with Python3
python3.8 -m venv venv
# Load the generated virtual environment
source venv/bin/activate
# Upgrade pip
pip install --upgrade pip
# Install all the dependencies
pip install -r requirements.txt
pip install --upgrade jaxlib
```
# Unittest
```
python -m unittest discover dirichletcal
```
# Cite
If you use this code in a publication please cite the following paper
```
@inproceedings{kull2019dircal,
title={Beyond temperature scaling: Obtaining well-calibrated multi-class probabilities with Dirichlet calibration},
author={Kull, Meelis and Nieto, Miquel Perello and K{\"a}ngsepp, Markus and Silva Filho, Telmo and Song, Hao and Flach, Peter},
booktitle={Advances in Neural Information Processing Systems},
pages={12295--12305},
year={2019}
}
```
# Examples
You can find some examples on how to use this package in the folder
[examples](examples)
# Pypi
To push a new version to Pypi first build the package
```
python3.8 setup.py sdist
```
And then upload to Pypi with twine
```
twine upload dist/*
```
It may require user and password if these are not set in your home directory a
file __.pypirc__
```
[pypi]
username = __token__
password = pypi-yourtoken
```
%prep
%autosetup -n dirichletcal-0.3.dev4
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-dirichletcal -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.3.dev4-1
- Package Spec generated
|