1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
|
%global _empty_manifest_terminate_build 0
Name: python-distinctipy
Version: 1.2.2
Release: 1
Summary: A lightweight package for generating visually distinct colours.
License: MIT License
URL: https://github.com/alan-turing-institute/distinctipy
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/3c/57/da49e941e26d0063b5d59c730f324ca72b4a693bf37543ae15016d48e18f/distinctipy-1.2.2.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-numpy
Requires: python3-black
Requires: python3-codecov
Requires: python3-coverage
Requires: python3-flake8
Requires: python3-isort
Requires: python3-pytest
Requires: python3-pytest-cov
Requires: python3-pandas
Requires: python3-matplotlib
Requires: python3-sphinx-rtd-theme
Requires: python3-nbsphinx
Requires: python3-sphinx-rtd-theme
Requires: python3-nbsphinx
Requires: python3-pandas
Requires: python3-matplotlib
Requires: python3-black
Requires: python3-codecov
Requires: python3-coverage
Requires: python3-flake8
Requires: python3-isort
Requires: python3-pytest
Requires: python3-pytest-cov
%description



[](https://codecov.io/gh/alan-turing-institute/distinctipy)
[](https://zenodo.org/badge/latestdoi/188444660)
[](https://distinctipy.readthedocs.io/en/latest/?badge=latest)
*distinctipy* is a lightweight python package providing functions to generate
colours that are visually distinct from one another.
Commonly available qualitative colormaps provided by the likes of matplotlib
generally have no more than 20 colours, but for some applications it is useful
to have many more colours that are clearly different from one another.
*distinctipy* can generate lists of colours of any length, with each new colour
added to the list being as visually distinct from the pre-existing colours in
the list as possible.
## Installation
*distinctipy* is designed for Python 3 and can be installed with pip by running:
```shell
pip install distinctipy
```
Alternatively clone the repo and install it locally:
```shell
git clone https://github.com/alan-turing-institute/distinctipy.git
cd distinctipy
pip install .
```
### Optional Dependencies
Starting in version 1.2.1 `distinctipy` no longer bundles `matplotlib`, `pandas` or dev dependencies in the default installation. If you wish to view
colours (e.g. with `distinctipy.color_swatch`) or examples you will need `matplotlib` and `pandas` installed. To do this, either install `distinctipy`
with the optional flag:
```bash
pip install distinctipy[optional]
```
Or install them separately:
```bash
pip install matplotlib pandas
```
For developers, to install the stack needed to run tests, generate docs etc. use the `[all]` flag:
```bash
pip install distinctipy[all]
```
## Usage and Examples
*distinctipy* can:
* Generate N visually distinct colours: `distinctipy.get_colors(N)`
* Generate colours that are distinct from an existing list of colours: `distinctipy.get_colors(N, existing_colors)`
* Generate pastel colours: `distinctipy.get_colors(N, pastel_factor=0.7)`
* Select black or white as the best font colour for any background colour: `distinctipy.get_text_color(background_color)`
* Convert lists of colours into matplotlib colormaps: `distinctipy.get_colormap(colors)`
* Invert colours: `distinctipy.invert_colors(colors)`
* Nicely display generated colours: `distinctipy.color_swatch(colors)`
* Compare distinctipy colours to other common colormaps: `examples.compare_clusters()` and `examples.compare_colors()`
* Simulate how colours look for someone with colourblindness: `colorblind.simulate_colors(colors, colorblind_type='Deuteranomaly')`
* Attempt to generate colours as distinct as possible for someone with colourblindness `distinctipy.get_colors(N, existing_colors, colorblind_type="Deuteranomaly")`
For example, to create and then display N = 36 visually distinct colours:
```python
from distinctipy import distinctipy
# number of colours to generate
N = 36
# generate N visually distinct colours
colors = distinctipy.get_colors(N)
# display the colours
distinctipy.color_swatch(colors)
```
More detailed usage and example output can be found in the notebook **[examples.ipynb](https://github.com/alan-turing-institute/distinctipy/blob/main/examples.ipynb)** and **[examples gallery](https://github.com/alan-turing-institute/distinctipy/tree/main/examples)**.
## References
*distinctipy* was heavily influenced and inspired by several web sources and
stack overflow answers. In particular:
* **Random generation of distinct colours:** [Andrew Dewes on GitHub](https://gist.github.com/adewes/5884820)
* **Colour distance metric:** [Thiadmer Riemersma at CompuPhase](https://www.compuphase.com/cmetric.htm)
* **Best text colour for background:** [Mark Ransom on Stack Overflow](https://stackoverflow.com/a/3943023)
* **Colourblindness Filters:** [Matthew Wickline and the Human-Computer Interaction Resource Network](http://web.archive.org/web/20090318054431/http://www.nofunc.com/Color_Blindness_Library) (web archive)
## Citing distinctipy
If you would like to cite distinctipy, please refer to the upload of the package on Zenodo: https://doi.org/10.5281/zenodo.3985191
%package -n python3-distinctipy
Summary: A lightweight package for generating visually distinct colours.
Provides: python-distinctipy
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-distinctipy



[](https://codecov.io/gh/alan-turing-institute/distinctipy)
[](https://zenodo.org/badge/latestdoi/188444660)
[](https://distinctipy.readthedocs.io/en/latest/?badge=latest)
*distinctipy* is a lightweight python package providing functions to generate
colours that are visually distinct from one another.
Commonly available qualitative colormaps provided by the likes of matplotlib
generally have no more than 20 colours, but for some applications it is useful
to have many more colours that are clearly different from one another.
*distinctipy* can generate lists of colours of any length, with each new colour
added to the list being as visually distinct from the pre-existing colours in
the list as possible.
## Installation
*distinctipy* is designed for Python 3 and can be installed with pip by running:
```shell
pip install distinctipy
```
Alternatively clone the repo and install it locally:
```shell
git clone https://github.com/alan-turing-institute/distinctipy.git
cd distinctipy
pip install .
```
### Optional Dependencies
Starting in version 1.2.1 `distinctipy` no longer bundles `matplotlib`, `pandas` or dev dependencies in the default installation. If you wish to view
colours (e.g. with `distinctipy.color_swatch`) or examples you will need `matplotlib` and `pandas` installed. To do this, either install `distinctipy`
with the optional flag:
```bash
pip install distinctipy[optional]
```
Or install them separately:
```bash
pip install matplotlib pandas
```
For developers, to install the stack needed to run tests, generate docs etc. use the `[all]` flag:
```bash
pip install distinctipy[all]
```
## Usage and Examples
*distinctipy* can:
* Generate N visually distinct colours: `distinctipy.get_colors(N)`
* Generate colours that are distinct from an existing list of colours: `distinctipy.get_colors(N, existing_colors)`
* Generate pastel colours: `distinctipy.get_colors(N, pastel_factor=0.7)`
* Select black or white as the best font colour for any background colour: `distinctipy.get_text_color(background_color)`
* Convert lists of colours into matplotlib colormaps: `distinctipy.get_colormap(colors)`
* Invert colours: `distinctipy.invert_colors(colors)`
* Nicely display generated colours: `distinctipy.color_swatch(colors)`
* Compare distinctipy colours to other common colormaps: `examples.compare_clusters()` and `examples.compare_colors()`
* Simulate how colours look for someone with colourblindness: `colorblind.simulate_colors(colors, colorblind_type='Deuteranomaly')`
* Attempt to generate colours as distinct as possible for someone with colourblindness `distinctipy.get_colors(N, existing_colors, colorblind_type="Deuteranomaly")`
For example, to create and then display N = 36 visually distinct colours:
```python
from distinctipy import distinctipy
# number of colours to generate
N = 36
# generate N visually distinct colours
colors = distinctipy.get_colors(N)
# display the colours
distinctipy.color_swatch(colors)
```
More detailed usage and example output can be found in the notebook **[examples.ipynb](https://github.com/alan-turing-institute/distinctipy/blob/main/examples.ipynb)** and **[examples gallery](https://github.com/alan-turing-institute/distinctipy/tree/main/examples)**.
## References
*distinctipy* was heavily influenced and inspired by several web sources and
stack overflow answers. In particular:
* **Random generation of distinct colours:** [Andrew Dewes on GitHub](https://gist.github.com/adewes/5884820)
* **Colour distance metric:** [Thiadmer Riemersma at CompuPhase](https://www.compuphase.com/cmetric.htm)
* **Best text colour for background:** [Mark Ransom on Stack Overflow](https://stackoverflow.com/a/3943023)
* **Colourblindness Filters:** [Matthew Wickline and the Human-Computer Interaction Resource Network](http://web.archive.org/web/20090318054431/http://www.nofunc.com/Color_Blindness_Library) (web archive)
## Citing distinctipy
If you would like to cite distinctipy, please refer to the upload of the package on Zenodo: https://doi.org/10.5281/zenodo.3985191
%package help
Summary: Development documents and examples for distinctipy
Provides: python3-distinctipy-doc
%description help



[](https://codecov.io/gh/alan-turing-institute/distinctipy)
[](https://zenodo.org/badge/latestdoi/188444660)
[](https://distinctipy.readthedocs.io/en/latest/?badge=latest)
*distinctipy* is a lightweight python package providing functions to generate
colours that are visually distinct from one another.
Commonly available qualitative colormaps provided by the likes of matplotlib
generally have no more than 20 colours, but for some applications it is useful
to have many more colours that are clearly different from one another.
*distinctipy* can generate lists of colours of any length, with each new colour
added to the list being as visually distinct from the pre-existing colours in
the list as possible.
## Installation
*distinctipy* is designed for Python 3 and can be installed with pip by running:
```shell
pip install distinctipy
```
Alternatively clone the repo and install it locally:
```shell
git clone https://github.com/alan-turing-institute/distinctipy.git
cd distinctipy
pip install .
```
### Optional Dependencies
Starting in version 1.2.1 `distinctipy` no longer bundles `matplotlib`, `pandas` or dev dependencies in the default installation. If you wish to view
colours (e.g. with `distinctipy.color_swatch`) or examples you will need `matplotlib` and `pandas` installed. To do this, either install `distinctipy`
with the optional flag:
```bash
pip install distinctipy[optional]
```
Or install them separately:
```bash
pip install matplotlib pandas
```
For developers, to install the stack needed to run tests, generate docs etc. use the `[all]` flag:
```bash
pip install distinctipy[all]
```
## Usage and Examples
*distinctipy* can:
* Generate N visually distinct colours: `distinctipy.get_colors(N)`
* Generate colours that are distinct from an existing list of colours: `distinctipy.get_colors(N, existing_colors)`
* Generate pastel colours: `distinctipy.get_colors(N, pastel_factor=0.7)`
* Select black or white as the best font colour for any background colour: `distinctipy.get_text_color(background_color)`
* Convert lists of colours into matplotlib colormaps: `distinctipy.get_colormap(colors)`
* Invert colours: `distinctipy.invert_colors(colors)`
* Nicely display generated colours: `distinctipy.color_swatch(colors)`
* Compare distinctipy colours to other common colormaps: `examples.compare_clusters()` and `examples.compare_colors()`
* Simulate how colours look for someone with colourblindness: `colorblind.simulate_colors(colors, colorblind_type='Deuteranomaly')`
* Attempt to generate colours as distinct as possible for someone with colourblindness `distinctipy.get_colors(N, existing_colors, colorblind_type="Deuteranomaly")`
For example, to create and then display N = 36 visually distinct colours:
```python
from distinctipy import distinctipy
# number of colours to generate
N = 36
# generate N visually distinct colours
colors = distinctipy.get_colors(N)
# display the colours
distinctipy.color_swatch(colors)
```
More detailed usage and example output can be found in the notebook **[examples.ipynb](https://github.com/alan-turing-institute/distinctipy/blob/main/examples.ipynb)** and **[examples gallery](https://github.com/alan-turing-institute/distinctipy/tree/main/examples)**.
## References
*distinctipy* was heavily influenced and inspired by several web sources and
stack overflow answers. In particular:
* **Random generation of distinct colours:** [Andrew Dewes on GitHub](https://gist.github.com/adewes/5884820)
* **Colour distance metric:** [Thiadmer Riemersma at CompuPhase](https://www.compuphase.com/cmetric.htm)
* **Best text colour for background:** [Mark Ransom on Stack Overflow](https://stackoverflow.com/a/3943023)
* **Colourblindness Filters:** [Matthew Wickline and the Human-Computer Interaction Resource Network](http://web.archive.org/web/20090318054431/http://www.nofunc.com/Color_Blindness_Library) (web archive)
## Citing distinctipy
If you would like to cite distinctipy, please refer to the upload of the package on Zenodo: https://doi.org/10.5281/zenodo.3985191
%prep
%autosetup -n distinctipy-1.2.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-distinctipy -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 1.2.2-1
- Package Spec generated
|